Introduction
Inverse pobability weights and the Cox proportional hazards model
Example: Ewing's sarcoma data set
April 07, 2017
\[\newcommand{\bzi}{\mathbf{z}_i}\] \[\newcommand{\bZi}{\mathbf{Z}_i}\] \[\newcommand{\bmu}{\boldsymbol\mu}\]
Introduction
Inverse pobability weights and the Cox proportional hazards model
Example: Ewing's sarcoma data set
\[ \begin{align*} \log \Bigg( \frac{Pr(X_i=x_i|\bZi=\bzi)}{1-P(X_i=x_i|\bZi=\bzi)} \Bigg) &= \bmu^T\bzi \\ \end{align*} \]
\[ \begin{align*} \hat{w_i} &= [\hat{Pr}(X_i=x_i|\bZi=\bzi)]^{-1} \\ &= \begin{cases} 1+\exp\{-(\hat{\bmu}^T\bzi) \} & \text{ if } x_i=1 \\ 1+\exp\{\hat{\bmu}^T\bzi \} & \text{ if } x_i=0 \\ \end{cases} \end{align*} \]
\[ \begin{align*} \hat{sw}_i &= \frac{\hat{Pr}(X_i=x_i)}{\hat{Pr}(X_i=x_i|\bZi=\bzi)} \\ \end{align*} \]
\[h(t;\boldsymbol z) = h_0(t) \exp\{\boldsymbol\gamma^T \boldsymbol z \} \]
| LDH | Treatment | N | P(X=x) | P(X=x| Z) | w | sw | Pseudo N |
| High | Novel | 12 | 0.62 | 0.39 | 2.58 | 1.60 | 19.20 |
| High | Standard | 19 | 0.38 | 0.61 | 1.63 | 0.62 | 11.80 |
| Normal | Novel | 35 | 0.62 | 0.78 | 1.29 | 0.80 | 28 |
| Normal | Standard | 10 | 0.38 | 0.22 | 4.50 | 1.72 | 17.20 |
| Biased | Controlled | Weighted | |
| (1) | (2) | (3) | |
| Treatment | 0.53 | 1.12 | 1.09 |
| (0.30, 0.96) | (0.59, 2.11) | (0.60, 1.98) | |
| p = 0.04 | p = 0.74 | p = 0.77 | |
| LDH status | 7.99 | ||
| (3.96, 16.13) | |||
| p = 0.00 | |||
| Observations | 76 | 76 | 76 |
Cole, Stephen R., and Miguel A. Hernán. 2004. “Adjusted Survival Curves with Inverse Probability Weights.” Computer Methods and Programs in Biomedicine 75: 45–49.
Nieto, Javier, and Josef Coresh. 1996. “Adjusting Survival Curves for Confounders: A Review and a New Method.” American Journal of Epidemiology 143: 1059–68.
Robins, J.M. 1998. “Marginal Structural Models.” American Statistical Association, Section on Bayesian Statistical Science 1997 Proceedings: 1–10.
Robins, J.M., M.A. Hernán, and B. Brumback. 2000. “Marginal Structural Models and Causal Inference in Epidemiology.” Epidemiology 11: 550–60.