A previous analysis suggested that in the US-FDA FAERS drug-related adverse event database, the number of cases for oral and injectable drugs decreased from year 2015 to year 2016 whereas the number of cases with inhalational and topical dugs slightly increased. In addition, the number of cases reported by physicians was found increasing. http://www.rpubs.com/vesicare/261737
Aims of this analysis were to describe drug names that were counterfieted or suspected counterfieted by country where incident was recorded. Results suggested that affected countries included not only USA but also those in Latin America, North Africa, Europe, Russia and Asia. Therefore, although this database would not have collected incidents worldwide, the US-FDA FAERS may serve as a useful tool to grasp a worldwide trend in the Substandard, Spurious, Falsely labelled, Falsified and Counterfeit (SSFFC) Medical Products.
Files in the csv format were used. https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ucm082193.htm
setwd("/Volumes/LaCie/FAERS/")
directories <- dir()
cl <- makeCluster(3)
registerDoParallel(cl)
caseid_fake <- foreach(i = 1: length(directories), .combine = c) %dopar% {
setwd(paste0("/Volumes/LaCie/FAERS/", directories[i], "/ascii"))
files <- grep("txt", dir(), value = T)
files <- grep("^REAC", files, value = TRUE)
data<-read.csv(files, header = TRUE, sep = "$")
data[grep("counterfeit", data$pt, ignore.case = TRUE), "caseid"]
}
stopCluster(cl)
setwd("/Volumes/LaCie/FAERS")
directories <- dir()
cl <- makeCluster(3)
registerDoParallel(cl)
drug <- foreach(i = 1: length(directories), .combine = rbind) %dopar% {
setwd(paste0("/Volumes/LaCie/FAERS/", directories[i], "/ascii"))
files <- grep("txt", dir(), value = T)
files <- grep("^DRUG", files, value = TRUE)
data<-read.csv(files, header = TRUE, sep = "$")
data[data$caseid %in% caseid_fake & data$role_cod == "PS",
c("caseid", "drugname", "route")]
}
drug[]<-parLapply(cl, drug, as.character)
stopCluster(cl)
setwd("/Volumes/LaCie/FAERS")
directories <- dir()
cl <- makeCluster(3)
registerDoParallel(cl)
date <- foreach(i = 1: length(directories), .combine = rbind) %dopar% {
setwd(paste0("/Volumes/LaCie/FAERS/", directories[i], "/ascii"))
files <- grep("txt", dir(), value = T)
files <- grep("^DEMO", files, value = TRUE)
data<-read.csv(files, header = TRUE, sep = "$")
data[data$caseid %in% caseid_fake, c("caseid", "fda_dt", "occp_cod","occr_country")]
}
date[] <- parLapply(cl, date, as.character)
stopCluster(cl)
data <- merge(drug, date, by="caseid")
data$drugname <- toupper(data$drugname) %>% str_extract('[A-Z]+')
data$route <- toupper(data$route)
data[] <- lapply(data, as.character)
data$route <- toupper(data$route) %>% str_replace_all("-", "") %>% str_extract("[A-Z]+")
data$route[is.na(data$route)] <- "UNKNOWN"
data$occp_cod[data$occp_cod ==""] <- "UNKNOWN"
data$occr_country[data$occr_country ==""] <- "UNKNOWN"
The table shows drug names that appeared thrice or more.
data %>% filter(occp_cod=="MD") %>% group_by(drugname, occr_country) %>% summarise(Number_Report = n()) %>% arrange(desc(Number_Report)) %>% filter(Number_Report >= 3) %>% kable(format="markdown")
drugname | occr_country | Number_Report |
---|---|---|
AVASTIN | MX | 37 |
HYDROCODONE | US | 18 |
OXYCONTIN | US | 17 |
VIAGRA | US | 9 |
PREMARIN | US | 8 |
COMBIGAN | EG | 7 |
ALPRAZOLAM | US | 6 |
AVASTIN | US | 5 |
AVASTIN | IN | 4 |
FENTANYL | US | 4 |
HALOPERIDOL | CH | 4 |
MIRAPEX | KR | 4 |
TYZINE | RU | 4 |
ZYPREXA | BG | 4 |
ACEON | RU | 3 |
CIALIS | US | 3 |
NEXAVAR | RO | 3 |
ONICIT | MX | 3 |
The table shows drug names that appeared twice or more.
data %>% filter(occp_cod=="PH") %>% group_by(drugname, occr_country) %>% summarise(Number_Report = n()) %>% arrange(desc(Number_Report)) %>% filter(Number_Report >= 2) %>% kable(format="markdown")
drugname | occr_country | Number_Report |
---|---|---|
ONICIT | MX | 7 |
VIAGRA | US | 6 |
INVEGA | US | 4 |
CIALIS | US | 3 |
ALPRAZOLAM | US | 2 |
CIALIS | JP | 2 |
CRESTOR | US | 2 |
HYDROCODONE | US | 2 |
JANUVIA | US | 2 |
OXYCODONE | US | 2 |
PROPECIA | US | 2 |
The table shows drug names that occured twice or more.
data %>% filter(occp_cod=="OT") %>% group_by(drugname, occr_country) %>% summarise(Number_Report = n()) %>% arrange(desc(Number_Report)) %>% filter(Number_Report >= 2) %>% kable(format="markdown")
drugname | occr_country | Number_Report |
---|---|---|
OXYCONTIN | US | 6 |
ATRIPLA | US | 4 |
ONICIT | MX | 4 |
VIAGRA | US | 4 |
CYMBALTA | US | 2 |
ESTRING | US | 2 |
HERCEPTIN | MX | 2 |
PREMARIN | US | 2 |
The table shows drug names that appeared 10-times or more.
data %>% filter(occp_cod=="CN") %>% group_by(drugname, occr_country) %>% summarise(Number_Report = n()) %>% arrange(desc(Number_Report)) %>% filter(Number_Report >= 10) %>% kable(format="markdown")
drugname | occr_country | Number_Report |
---|---|---|
VIAGRA | US | 186 |
CIALIS | US | 127 |
DEPAKINE | CN | 34 |
CYMBALTA | US | 27 |
PLAVIX | CN | 24 |
HEPTODIN | CN | 20 |
PREMARIN | US | 18 |
GLUCOBAY | CN | 17 |
ALPRAZOLAM | US | 15 |
FENTANYL | US | 12 |
SERETIDE | CN | 12 |
CELEBREX | US | 11 |
PREMPRO | US | 10 |
SILDENAFIL | US | 10 |
The table shows drug names that appeared twice or more.
data %>% filter(occp_cod=="UNKNOWN") %>% group_by(drugname, occr_country) %>% summarise(Number_Report = n()) %>% arrange(desc(Number_Report)) %>% filter(Number_Report >= 2) %>% kable(format="markdown")
drugname | occr_country | Number_Report |
---|---|---|
ADDERALL | UNKNOWN | 5 |
AMPHETAMINE | UNKNOWN | 5 |
NOVOTHYROX | NL | 4 |
NOVOTHYROX | RU | 4 |
EUTHYROX | UNKNOWN | 3 |
NEXIUM | US | 3 |
CIALIS | UNKNOWN | 2 |
FASLODEX | UNKNOWN | 2 |
MEBENDAZOLE | UNKNOWN | 2 |
NORCO | UNKNOWN | 2 |
OXYCONTIN | UNKNOWN | 2 |