knitr::purl("Testosterone.Rmd",output="Test_pilot.R")
## 
## 
## processing file: Testosterone.Rmd
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |..                                                               |   3%
  |                                                                       
  |...                                                              |   5%
  |                                                                       
  |.....                                                            |   8%
  |                                                                       
  |.......                                                          |  11%
  |                                                                       
  |.........                                                        |  13%
  |                                                                       
  |..........                                                       |  16%
  |                                                                       
  |............                                                     |  18%
  |                                                                       
  |..............                                                   |  21%
  |                                                                       
  |...............                                                  |  24%
  |                                                                       
  |.................                                                |  26%
  |                                                                       
  |...................                                              |  29%
  |                                                                       
  |.....................                                            |  32%
  |                                                                       
  |......................                                           |  34%
  |                                                                       
  |........................                                         |  37%
  |                                                                       
  |..........................                                       |  39%
  |                                                                       
  |...........................                                      |  42%
  |                                                                       
  |.............................                                    |  45%
  |                                                                       
  |...............................                                  |  47%
  |                                                                       
  |................................                                 |  50%
  |                                                                       
  |..................................                               |  53%
  |                                                                       
  |....................................                             |  55%
  |                                                                       
  |......................................                           |  58%
  |                                                                       
  |.......................................                          |  61%
  |                                                                       
  |.........................................                        |  63%
  |                                                                       
  |...........................................                      |  66%
  |                                                                       
  |............................................                     |  68%
  |                                                                       
  |..............................................                   |  71%
  |                                                                       
  |................................................                 |  74%
  |                                                                       
  |..................................................               |  76%
  |                                                                       
  |...................................................              |  79%
  |                                                                       
  |.....................................................            |  82%
  |                                                                       
  |.......................................................          |  84%
  |                                                                       
  |........................................................         |  87%
  |                                                                       
  |..........................................................       |  89%
  |                                                                       
  |............................................................     |  92%
  |                                                                       
  |..............................................................   |  95%
  |                                                                       
  |...............................................................  |  97%
  |                                                                       
  |.................................................................| 100%
## output file: Test_pilot.R
## [1] "Test_pilot.R"
GM.center <- function(x) {
  if(is.numeric(x)==FALSE){x <- as.numeric(x)}
  if(is.integer(x)==TRUE){x <- as.numeric(x)}
  m <- mean(x, na.rm = TRUE)
  out <- x-m
  out
}

r.t <- function(data,type="none",reflect=FALSE,offset=0) {
  x <- data
  #  x <- A1$ADRSQOPP
  # reflect <- TRUE
  # offset <- 1
  # type <- "log"
  
  if(reflect==TRUE) {
    dir <- 1
    offset <- 1
    off2 <- 0
    m.x <- max(x,na.rm=TRUE)+offset
  } else {
    if(offset==0 & min(x,na.rm=TRUE)<=0) {offset <- 1}
    m.x <- 0
    dir <- -1 
    off2 <- offset
  }
  
  out <- NULL
  
  switch(type,
         sqrt={
           for (i in 1:length(x)) {
             if(is.na(x[i])==FALSE) {
               x[i] <- (dir*(m.x-x[i]))+off2
               out[i] <- sqrt(x[i])
             } else {
               out[i] <- x[i]
             }
           }
         },
         
         log={
           for (i in 1:length(x)) {
             if(is.na(x[i])==FALSE) {
               x[i] <- (dir*(m.x-x[i]))+off2
               out[i] <- log(x[i])
             } else {
               out[i] <- x[i]
             }
           }
         },
         inverse={
           for (i in 1:length(x)) {
             if(is.na(x[i])==FALSE) {
               x[i] <- (dir*(m.x-x[i]))+off2
               out[i] <- 1/x[i]
             } else {
               out[i] <- x[i]
             }
           }
         },
         none={
           for (i in 1:length(x)) {
             if(is.na(x[i])==FALSE) {
               out[i] <- (dir*(m.x-x[i]))+off2
             }
           }
         }
  )
  return(out)
}


## Load Packages
library(nlme)
library(lsmeans)
## Loading required package: estimability
library(readr)
## Warning: package 'readr' was built under R version 3.3.2
library(ggplot2)


## Load Data
T_DF <- read_csv("~/R/DataHouse/PROJECTS/ChanceStrenth/T_Data_Pilot.csv", # <- Enter your own Path to the data here.
    col_types = cols(Anger = col_double(), 
        Empathy = col_double(), Ethical.Risk = col_double(), 
        Finacial.Risk = col_double(), `Health_Safety Risk` = col_double(), 
        Hostility = col_double(), Physical.Aggression = col_double(), 
        `Recreational Risk` = col_double(), 
        Social = col_double(), Total.Aggression = col_double(), 
        Total.Risk = col_double(), Verbal.Aggression = col_double()))
## Warning: Duplicated column names deduplicated: 'Sex' => 'Sex_1' [7]
## Warning: The following named parsers don't match the column names:
## Health_Safety Risk, Recreational Risk
T_DF <- as.data.frame(T_DF)

###Change data types

T_DF$ID <- as.factor(T_DF$ID)
T_DF$Pre <- as.factor(T_DF$Pre)
T_DF$Sex_1 <- as.factor(T_DF$Sex_1)
T_DF$RinseC <- as.factor(T_DF$RinseC)
T_DF$Session <- as.factor(T_DF$Session)
T_DF$InterventionC <- as.factor(T_DF$InterventionC)

T_DF.RAW <- T_DF


###GrandMeanCenter all columns

T_DF.GM.pred <- T_DF[,11:22]

for (i in 1:ncol(T_DF.GM.pred)) {
  T_DF.GM.pred[,i] <- GM.center(T_DF.GM.pred[,i])
  name <- colnames(T_DF.GM.pred)[i]
  colnames(T_DF.GM.pred)[i] <- paste(name,".","GM",sep="")
  }

T_DF <- cbind.data.frame(T_DF,T_DF.GM.pred)


  T_DF$GM.time <- GM.center(T_DF$Time) #GM.time

  T_DF$Test.l <- r.t(T_DF$Test,type="log")
  
  T_DF$Test.l.GM <- GM.center(T_DF$Test.l) #GMC Testosterone

# Remove Missing Testosterone Data
  MissingDV <- which(is.na(T_DF$Test)) #Remove Mising values due to Not having data T data
  T_DF.NA <- T_DF[-MissingDV,]
#Time Trends

Model1 <- lme(fixed=Test.l~GM.time*Sex+I(GM.time^2)*Sex,random=list(ID=pdDiag(~GM.time+I(GM.time^2)),Session=pdDiag(~GM.time+I(GM.time^2))),correlation = corAR1(),data=T_DF.NA)
summary(Model1)
## Linear mixed-effects model fit by REML
##  Data: T_DF.NA 
##        AIC      BIC    logLik
##   487.8053 535.5057 -229.9027
## 
## Random effects:
##  Formula: ~GM.time + I(GM.time^2) | ID
##  Structure: Diagonal
##         (Intercept)      GM.time I(GM.time^2)
## StdDev:   0.2420114 4.139588e-11 3.807967e-11
## 
##  Formula: ~GM.time + I(GM.time^2) | Session %in% ID
##  Structure: Diagonal
##          (Intercept)      GM.time I(GM.time^2)  Residual
## StdDev: 0.0001421114 1.576449e-11 2.098194e-12 0.7372307
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | ID/Session 
##  Parameter estimate(s):
##       Phi 
## 0.5770667 
## Fixed effects: Test.l ~ GM.time * Sex + I(GM.time^2) * Sex 
##                      Value  Std.Error  DF  t-value p-value
## (Intercept)       5.585607 0.16707264 179 33.43220  0.0000
## GM.time           0.081279 0.04996890 179  1.62658  0.1056
## Sex               0.218064 0.24032604  10  0.90737  0.3856
## I(GM.time^2)     -0.235528 0.03141161 179 -7.49811  0.0000
## GM.time:Sex       0.045294 0.07255579 179  0.62427  0.5332
## Sex:I(GM.time^2)  0.071660 0.04561273 179  1.57106  0.1179
##  Correlation: 
##                  (Intr) GM.tim Sex    I(GM.^ GM.t:S
## GM.time           0.000                            
## Sex              -0.695  0.000                     
## I(GM.time^2)     -0.509  0.000  0.354              
## GM.time:Sex       0.000 -0.689  0.001  0.000       
## Sex:I(GM.time^2)  0.350  0.000 -0.510 -0.689 -0.008
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.34632690 -0.76212607 -0.08414732  0.89875816  2.24221901 
## 
## Number of Observations: 229
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
#Remove First time point
T_DF.NA.rm1 <- subset(T_DF.NA,Time==2|Time==3|Time==4|Time==5)    #only for the last 4 time points
#T_DF.NA.rm1 <- subset(T_DF.NA,Time==3|Time==4|Time==5)           #only for the last 3 time points
T_DF.NA.rm1$GM.time2 <- GM.center(T_DF.NA.rm1$Time)

options(contrasts=c("contr.treatment","contr.poly"))
Model1 <- lme(fixed=Test.l~GM.time2*Sex_1,random=list(ID=pdDiag(~GM.time2),Session=pdDiag(~GM.time2)),correlation = corAR1(),data=T_DF.NA.rm1) # Linear Model
summary(Model1)
## Linear mixed-effects model fit by REML
##  Data: T_DF.NA.rm1 
##        AIC    BIC    logLik
##   243.6604 275.59 -111.8302
## 
## Random effects:
##  Formula: ~GM.time2 | ID
##  Structure: Diagonal
##          (Intercept)     GM.time2
## StdDev: 2.689795e-12 3.576292e-16
## 
##  Formula: ~GM.time2 | Session %in% ID
##  Structure: Diagonal
##          (Intercept)  GM.time2 Residual
## StdDev: 0.0004542804 0.1515614 0.825445
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | ID/Session 
##  Parameter estimate(s):
##       Phi 
## 0.9209313 
## Fixed effects: Test.l ~ GM.time2 * Sex_1 
##                        Value  Std.Error  DF  t-value p-value
## (Intercept)         5.288249 0.15896407 136 33.26695  0.0000
## GM.time2           -0.290712 0.04835715 136 -6.01177  0.0000
## Sex_1Male           0.332197 0.22986166  10  1.44520  0.1790
## GM.time2:Sex_1Male  0.161458 0.06992432 136  2.30903  0.0224
##  Correlation: 
##                    (Intr) GM.tm2 Sx_1Ml
## GM.time2            0.000              
## Sex_1Male          -0.692  0.000       
## GM.time2:Sex_1Male  0.000 -0.692  0.000
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.11089632 -0.85068311 -0.02536655  0.91844062  1.70287034 
## 
## Number of Observations: 184
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
  #Fitting a quadraditc model does not fit as well as the linear model
    # Model1 <- lme(fixed=Test.l~GM.time2+I(GM.time2^2)*Sex_1,random=list(ID=pdDiag(~GM.time2+I(GM.time2^2)),
    # Session=pdDiag(~GM.time2+I(GM.time2^2))),correlation = corAR1(),data=T_DF.NA.rm1)
    # summary(Model1)
#Effect of the Rinse Condition

  Model2 <- lme(fixed=Test.l~GM.time*RinseC*Sex,random=list(ID=pdDiag(~GM.time),Session=pdDiag(~GM.time)),correlation = corAR1(),data=T_DF.NA)
  summary(Model2)
## Linear mixed-effects model fit by REML
##  Data: T_DF.NA 
##       AIC      BIC    logLik
##   550.647 598.2213 -261.3235
## 
## Random effects:
##  Formula: ~GM.time | ID
##  Structure: Diagonal
##         (Intercept)      GM.time
## StdDev:   0.2198911 1.756494e-09
## 
##  Formula: ~GM.time | Session %in% ID
##  Structure: Diagonal
##          (Intercept)      GM.time  Residual
## StdDev: 0.0001328074 1.604299e-09 0.8297201
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | ID/Session 
##  Parameter estimate(s):
##       Phi 
## 0.5217231 
## Fixed effects: Test.l ~ GM.time * RinseC * Sex 
##                             Value Std.Error  DF   t-value p-value
## (Intercept)              5.090170 0.1829617 179 27.820963  0.0000
## GM.time                  0.132222 0.0809577 179  1.633225  0.1042
## RinseCRinse             -0.237126 0.2254608  32 -1.051737  0.3008
## Sex                      0.320958 0.2636437  10  1.217394  0.2514
## GM.time:RinseCRinse     -0.112276 0.1144915 179 -0.980647  0.3281
## GM.time:Sex              0.007129 0.1170646 179  0.060902  0.9515
## RinseCRinse:Sex          0.177963 0.3265849  32  0.544922  0.5896
## GM.time:RinseCRinse:Sex  0.071118 0.1662653 179  0.427739  0.6694
##  Correlation: 
##                         (Intr) GM.tim RnsCRn Sex    GM.t:RCR GM.t:S RnCR:S
## GM.time                  0.000                                            
## RinseCRinse             -0.616  0.000                                     
## Sex                     -0.694  0.000  0.428                              
## GM.time:RinseCRinse      0.000 -0.707  0.000  0.000                       
## GM.time:Sex              0.000 -0.692  0.000  0.000  0.489                
## RinseCRinse:Sex          0.425  0.000 -0.690 -0.617  0.000    0.000       
## GM.time:RinseCRinse:Sex  0.000  0.487  0.000  0.000 -0.689   -0.704 -0.005
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -1.5715334 -0.5610296 -0.2266947  0.9530433  2.4671850 
## 
## Number of Observations: 229
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
  anova(Model2)
##                    numDF denDF   F-value p-value
## (Intercept)            1   179 2488.6042  <.0001
## GM.time                1   179    5.4315  0.0209
## RinseC                 1    32    0.8808  0.3550
## Sex                    1    10    3.9011  0.0765
## GM.time:RinseC         1   179    0.8978  0.3446
## GM.time:Sex            1   179    0.2630  0.6087
## RinseC:Sex             1    32    0.2995  0.5880
## GM.time:RinseC:Sex     1   179    0.1830  0.6694
  Model2 <- lme(fixed=Test.l~GM.time*RinseC*Sex,random=list(ID=pdDiag(~GM.time),Session=pdDiag(~GM.time)),correlation = corAR1(),data=subset(T_DF.NA,InterventionC=="Testosterone"))
  summary(Model2)
## Linear mixed-effects model fit by REML
##  Data: subset(T_DF.NA, InterventionC == "Testosterone") 
##        AIC      BIC    logLik
##   337.5185 375.5775 -154.7592
## 
## Random effects:
##  Formula: ~GM.time | ID
##  Structure: Diagonal
##         (Intercept)      GM.time
## StdDev:   0.2161682 1.383131e-05
## 
##  Formula: ~GM.time | Session %in% ID
##  Structure: Diagonal
##          (Intercept)      GM.time  Residual
## StdDev: 1.269412e-05 8.314083e-06 0.8247038
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | ID/Session 
##  Parameter estimate(s):
##        Phi 
## 0.01262178 
## Fixed effects: Test.l ~ GM.time * RinseC * Sex 
##                             Value  Std.Error DF  t-value p-value
## (Intercept)              5.741646 0.16742537 92 34.29376  0.0000
## GM.time                  0.125586 0.09906292 92  1.26774  0.2081
## RinseCRinse             -0.232546 0.20826830 10 -1.11657  0.2903
## Sex                      0.276768 0.25444787 10  1.08772  0.3022
## GM.time:RinseCRinse     -0.148169 0.14581668 92 -1.01613  0.3122
## GM.time:Sex              0.070192 0.15346762 92  0.45738  0.6485
## RinseCRinse:Sex          0.162862 0.30892165 10  0.52719  0.6096
## GM.time:RinseCRinse:Sex  0.102852 0.21552353 92  0.47722  0.6343
##  Correlation: 
##                         (Intr) GM.tim RnsCRn Sex    GM.t:RCR GM.t:S RnCR:S
## GM.time                  0.000                                            
## RinseCRinse             -0.581  0.000                                     
## Sex                     -0.658  0.000  0.382                              
## GM.time:RinseCRinse      0.000 -0.679  0.000  0.000                       
## GM.time:Sex              0.000 -0.645  0.000  0.000  0.439                
## RinseCRinse:Sex          0.391  0.000 -0.674 -0.626  0.000    0.000       
## GM.time:RinseCRinse:Sex  0.000  0.460  0.000  0.000 -0.677   -0.712  0.000
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -1.99646476 -0.89344179  0.08229893  0.85675813  1.61804519 
## 
## Number of Observations: 120
## Number of Groups: 
##              ID Session %in% ID 
##              12              24
  anova(Model2)
##                    numDF denDF  F-value p-value
## (Intercept)            1    92 3436.734  <.0001
## GM.time                1    92    4.180  0.0438
## RinseC                 1    10    0.824  0.3855
## Sex                    1    10    3.301  0.0993
## GM.time:RinseC         1    92    0.722  0.3978
## GM.time:Sex            1    92    1.289  0.2591
## RinseC:Sex             1    10    0.278  0.6096
## GM.time:RinseC:Sex     1    92    0.228  0.6343
#Effect of the Intervention
Model3 <- lme(fixed=Test.l~GM.time+InterventionC*Sex,random=list(ID=pdDiag(~GM.time),Session=pdDiag(~GM.time)),correlation = corAR1(),data=T_DF.NA)

summary(Model3)
## Linear mixed-effects model fit by REML
##  Data: T_DF.NA 
##        AIC      BIC    logLik
##   479.1987 516.7268 -228.5994
## 
## Random effects:
##  Formula: ~GM.time | ID
##  Structure: Diagonal
##         (Intercept)      GM.time
## StdDev:   0.2750274 1.771653e-05
## 
##  Formula: ~GM.time | Session %in% ID
##  Structure: Diagonal
##          (Intercept)      GM.time  Residual
## StdDev: 6.186147e-06 4.088338e-06 0.6172766
## 
## Correlation Structure: AR(1)
##  Formula: ~1 | ID/Session 
##  Parameter estimate(s):
##         Phi 
## 0.008256705 
## Fixed effects: Test.l ~ GM.time + InterventionC * Sex 
##                                   Value  Std.Error  DF  t-value p-value
## (Intercept)                    4.507605 0.14048287 182 32.08651  0.0000
## GM.time                        0.054954 0.02900793 182  1.89445  0.0598
## InterventionCTestosterone      1.119666 0.11545986  32  9.69744  0.0000
## Sex                            0.473418 0.19913718  10  2.37735  0.0388
## InterventionCTestosterone:Sex -0.118666 0.16584871  32 -0.71551  0.4795
##  Correlation: 
##                               (Intr) GM.tim IntrCT Sex   
## GM.time                        0.000                     
## InterventionCTestosterone     -0.445  0.000              
## Sex                           -0.705 -0.005  0.314       
## InterventionCTestosterone:Sex  0.310  0.007 -0.696 -0.435
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.3753415 -0.4171013  0.0568346  0.7002506  2.4142695 
## 
## Number of Observations: 229
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
#Models for correlations with predictors

MissingDV2 <- which(is.na(T_DF.NA$Total.Aggression))  #this removes time points 2,3, 4 from the data frame
T_DF.NA2 <- T_DF.NA[-MissingDV2,] 

##Calculate Change Scores
 uni <- unique(T_DF.NA2$ID)
 
 T_DF.chng <- NULL
 for (i in 1:length(uni)) {                          #this subtracts the post time from the previous time
   df.temp <- subset(T_DF.NA2,ID==uni[i])
   uni2 <- unique(df.temp$Session)
   for (ii in 1:length(uni2)) {
     df.temp2 <- subset(df.temp,Session==uni2[ii])
     chng <- df.temp2[2,10:24]-df.temp2[1,10:24]
     chng2 <- rbind.data.frame(chng,chng)
     df.out <- cbind.data.frame(df.temp2,chng2)
     T_DF.chng <- rbind.data.frame(T_DF.chng,df.out)
   }
 }
## Warning in data.frame(..., check.names = FALSE): row names were found from
## a short variable and have been discarded
T_DF.chng <- na.exclude(T_DF.chng)
T_DF.chng <- subset(T_DF.chng,Pre=="Before" & InterventionC=="Testosterone")

  colMeans(T_DF.chng[,26:37]) #AVerage Change scores observed
##              Anger.GM          Hostility.GM         Total.Risk.GM 
##             0.5326087             0.1068841            -3.0996377 
##      Finacial.Risk.GM       Ethical.Risk.GM Health_Safety.Risk.GM 
##             0.4275362            -0.8496377            -0.6467391 
##  Recreational.Risk.GM             Social.GM            Empathy.GM 
##            -1.0760870            -0.9547101            -0.1884058 
##               GM.time                Test.l             Test.l.GM 
##            -2.0000000             4.5932844            -0.6974727
  mean(T_DF.chng$Test.1)
## [1] 207.362
  #Analysis of change scores for Total Aggression
  Model4.total.a <- lme(fixed=Test.1~Total.Aggression.1,random=~1 |ID/Session,data=T_DF.chng)
  summary(Model4.total.a)
## Linear mixed-effects model fit by REML
##  Data: T_DF.chng 
##        AIC      BIC    logLik
##   297.7943 303.2496 -143.8972
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    165.7434
## 
##  Formula: ~1 | Session %in% ID
##         (Intercept) Residual
## StdDev:    64.90407 37.07113
## 
## Fixed effects: Test.1 ~ Total.Aggression.1 
##                        Value Std.Error DF  t-value p-value
## (Intercept)        210.72255  50.51118 11 4.171800  0.0016
## Total.Aggression.1   0.46801   3.06407 11 0.152741  0.8814
##  Correlation: 
##                    (Intr)
## Total.Aggression.1 -0.085
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -0.89491748 -0.28316357  0.05252704  0.24032316  0.60103553 
## 
## Number of Observations: 24
## Number of Groups: 
##              ID Session %in% ID 
##              12              24
  p.c <- ggplot(T_DF.chng,aes(y=Test.1,x=Total.Aggression.1)) + geom_point(size=2) + geom_smooth(method="lm")
  p.c

T_DF.max <- NULL
uni <- unique(T_DF.NA$ID)
for (i in 1:length(uni)) {                          #this subtracts the post time from the previous time
   df.temp <- subset(T_DF.NA,ID==uni[i])
   uni2 <- unique(df.temp$Session)
   for (ii in 1:length(uni2)) {
     df.temp2 <- subset(df.temp,Session==uni2[ii])
     df.temp2$Test.l.GM[df.temp2$Time==5] <- df.temp2$Test.l.GM[df.temp2$Time==5]
     T_DF.max <- rbind.data.frame(T_DF.max,df.temp2)
   }
}
MissingDV3 <- which(is.na(T_DF.max$Total.Aggression))  #this removes time points 2,3, 4 from the data frame
T_DF.NA3.max <- T_DF.max[-MissingDV3,]


Model.t_max.1 <- lme(fixed=Total.Aggression~Test.l.GM*Sex_1,random=~1|ID/Session,data=subset(T_DF.max,Time==5),method="ML")
  summary(Model.t_max.1)
## Linear mixed-effects model fit by maximum likelihood
##  Data: subset(T_DF.max, Time == 5) 
##        AIC      BIC    logLik
##   322.2298 335.0303 -154.1149
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    7.443528
## 
##  Formula: ~1 | Session %in% ID
##         (Intercept) Residual
## StdDev:    4.675683 2.271383
## 
## Fixed effects: Total.Aggression ~ Test.l.GM * Sex_1 
##                         Value Std.Error DF   t-value p-value
## (Intercept)         29.853292  3.510297 32  8.504493  0.0000
## Test.l.GM            3.658112  2.253224 32  1.623501  0.1143
## Sex_1Male            0.984791  4.894156 10  0.201218  0.8446
## Test.l.GM:Sex_1Male -3.772855  3.097254 32 -1.218129  0.2321
##  Correlation: 
##                     (Intr) Ts..GM Sx_1Ml
## Test.l.GM            0.281              
## Sex_1Male           -0.717 -0.202       
## Test.l.GM:Sex_1Male -0.205 -0.727  0.104
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -0.92072312 -0.23831532  0.00476136  0.24137541  0.79640484 
## 
## Number of Observations: 46
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
Model.t_max.2 <- lme(fixed=Total.Aggression~Test.l.GM*Sex_1,random=~1|ID/Session,data=T_DF.NA3.max,method="ML")
  summary(Model.t_max.2)
## Linear mixed-effects model fit by maximum likelihood
##  Data: T_DF.NA3.max 
##        AIC      BIC    logLik
##   609.8407 627.4167 -297.9203
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    7.410028
## 
##  Formula: ~1 | Session %in% ID
##         (Intercept) Residual
## StdDev:    1.132564 5.234442
## 
## Fixed effects: Total.Aggression ~ Test.l.GM * Sex_1 
##                         Value Std.Error DF   t-value p-value
## (Intercept)         28.171744  3.401748 43  8.281549  0.0000
## Test.l.GM            2.895538  1.787298 43  1.620064  0.1125
## Sex_1Male            3.139065  4.685347 10  0.669975  0.5180
## Test.l.GM:Sex_1Male -3.651545  2.419893 43 -1.508969  0.1386
##  Correlation: 
##                     (Intr) Ts..GM Sx_1Ml
## Test.l.GM            0.341              
## Sex_1Male           -0.726 -0.248       
## Test.l.GM:Sex_1Male -0.252 -0.739  0.211
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.39348694 -0.48410852 -0.03356185  0.49387347  2.60556556 
## 
## Number of Observations: 91
## Number of Groups: 
##              ID Session %in% ID 
##              12              46

Total Aggression

# Sex 1 = Male , 0 = Female

# Model4.total.a <- lme(fixed=Total.Aggression~Test.l.GM,random=~1 |ID/Session,data=subset(T_DF.NA2,InterventionC=="Testosterone"), method="ML")
# summary(Model4.total.a)
# 
# Model4.total.a <- lme(fixed=Total.Aggression~Test.l.GM*Pre*Sex_1,random=~1 |ID/Session,data=subset(T_DF.NA2,InterventionC=="Testosterone"), method="ML")
# summary(Model4.total.a)
# 
# lsmeans(Model4.total.a, pairwise~Pre|Sex_1)

Model4 <- lme(fixed=Total.Aggression~Pre*Sex_1*InterventionC,random=~1 |ID/Session,data=T_DF.NA2, method="ML")
summary(Model4)
## Linear mixed-effects model fit by maximum likelihood
##  Data: T_DF.NA2 
##        AIC    BIC    logLik
##   605.5606 633.18 -291.7803
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    7.621099
## 
##  Formula: ~1 | Session %in% ID
##         (Intercept) Residual
## StdDev:    1.338002 4.768877
## 
## Fixed effects: Total.Aggression ~ Pre * Sex_1 * InterventionC 
##                                                   Value Std.Error DF
## (Intercept)                                   25.359792  3.617005 41
## PreBefore                                     -1.818182  2.129200 41
## Sex_1Male                                      5.231249  5.116883 10
## InterventionCTestosterone                      5.335768  2.144077 32
## PreBefore:Sex_1Male                            2.579198  3.055619 41
## PreBefore:InterventionCTestosterone           -3.874126  2.893013 41
## Sex_1Male:InterventionCTestosterone           -5.244859  3.080167 32
## PreBefore:Sex_1Male:InterventionCTestosterone  5.385837  4.207889 41
##                                                 t-value p-value
## (Intercept)                                    7.011269  0.0000
## PreBefore                                     -0.853927  0.3981
## Sex_1Male                                      1.022351  0.3307
## InterventionCTestosterone                      2.488609  0.0182
## PreBefore:Sex_1Male                            0.844084  0.4035
## PreBefore:InterventionCTestosterone           -1.339132  0.1879
## Sex_1Male:InterventionCTestosterone           -1.702784  0.0983
## PreBefore:Sex_1Male:InterventionCTestosterone  1.279938  0.2078
##  Correlation: 
##                                               (Intr) PreBfr Sx_1Ml IntrCT
## PreBefore                                     -0.294                     
## Sex_1Male                                     -0.707  0.208              
## InterventionCTestosterone                     -0.321  0.497  0.227       
## PreBefore:Sex_1Male                            0.205 -0.697 -0.290 -0.346
## PreBefore:InterventionCTestosterone            0.217 -0.736 -0.153 -0.675
## Sex_1Male:InterventionCTestosterone            0.224 -0.346 -0.313 -0.696
## PreBefore:Sex_1Male:InterventionCTestosterone -0.149  0.506  0.211  0.464
##                                               PrB:S_1M PB:ICT S_1M:I
## PreBefore                                                           
## Sex_1Male                                                           
## InterventionCTestosterone                                           
## PreBefore:Sex_1Male                                                 
## PreBefore:InterventionCTestosterone            0.513                
## Sex_1Male:InterventionCTestosterone            0.482    0.470       
## PreBefore:Sex_1Male:InterventionCTestosterone -0.726   -0.688 -0.673
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.4851087 -0.5981793  0.0109560  0.5627690  2.1926572 
## 
## Number of Observations: 91
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
lsmeans(Model4, pairwise~Pre|Sex_1*InterventionC)
## $lsmeans
## Sex_1 = Female, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  25.35979 3.617005 11 17.39882 33.32077
##  Before 23.54161 3.617005 11 15.58064 31.50258
## 
## Sex_1 = Male, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  30.59104 3.619360 10 22.52661 38.65548
##  Before 31.35206 3.655052 10 23.20810 39.49602
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  30.69556 3.563655 11 22.85201 38.53911
##  Before 25.00325 3.563655 11 17.15970 32.84680
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  30.68195 3.619360 10 22.61751 38.74639
##  Before 32.95468 3.619360 10 24.89024 41.01911
## 
## Confidence level used: 0.95 
## 
## $contrasts
## Sex_1 = Female, InterventionC = Placebo:
##  contrast        estimate       SE df t.ratio p.value
##  After - Before  1.818182 2.129200 41   0.854  0.3981
## 
## Sex_1 = Male, InterventionC = Placebo:
##  contrast        estimate       SE df t.ratio p.value
##  After - Before -0.761016 2.191647 41  -0.347  0.7302
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  contrast        estimate       SE df t.ratio p.value
##  After - Before  5.692308 1.958579 41   2.906  0.0059
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  contrast        estimate       SE df t.ratio p.value
##  After - Before -2.272727 2.129200 41  -1.067  0.2920
lsmip(Model4,InterventionC~Pre|Sex_1)

Physical Aggression

Model4 <- lme(fixed=Physical.Aggression~Pre*Sex_1*InterventionC,random=~1 |ID/Session,data=T_DF.NA2, method="ML")
summary(Model4)
## Linear mixed-effects model fit by maximum likelihood
##  Data: T_DF.NA2 
##        AIC      BIC    logLik
##   397.0568 424.6762 -187.5284
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    2.490678
## 
##  Formula: ~1 | Session %in% ID
##         (Intercept) Residual
## StdDev:     0.56272 1.475714
## 
## Fixed effects: Physical.Aggression ~ Pre * Sex_1 * InterventionC 
##                                                   Value Std.Error DF
## (Intercept)                                    4.524563 1.1767679 41
## PreBefore                                     -0.272727 0.6588743 41
## Sex_1Male                                      4.214662 1.6647477 10
## InterventionCTestosterone                      1.493114 0.6839883 32
## PreBefore:Sex_1Male                            0.545731 0.9461480 41
## PreBefore:InterventionCTestosterone           -1.342657 0.8952339 41
## Sex_1Male:InterventionCTestosterone           -2.584024 0.9823838 32
## PreBefore:Sex_1Male:InterventionCTestosterone  1.342381 1.3025512 41
##                                                 t-value p-value
## (Intercept)                                    3.844907  0.0004
## PreBefore                                     -0.413929  0.6811
## Sex_1Male                                      2.531712  0.0298
## InterventionCTestosterone                      2.182953  0.0365
## PreBefore:Sex_1Male                            0.576793  0.5672
## PreBefore:InterventionCTestosterone           -1.499784  0.1413
## Sex_1Male:InterventionCTestosterone           -2.630360  0.0130
## PreBefore:Sex_1Male:InterventionCTestosterone  1.030578  0.3088
##  Correlation: 
##                                               (Intr) PreBfr Sx_1Ml IntrCT
## PreBefore                                     -0.280                     
## Sex_1Male                                     -0.707  0.198              
## InterventionCTestosterone                     -0.315  0.482  0.223       
## PreBefore:Sex_1Male                            0.195 -0.696 -0.276 -0.335
## PreBefore:InterventionCTestosterone            0.206 -0.736 -0.146 -0.654
## Sex_1Male:InterventionCTestosterone            0.219 -0.335 -0.307 -0.696
## PreBefore:Sex_1Male:InterventionCTestosterone -0.142  0.506  0.200  0.450
##                                               PrB:S_1M PB:ICT S_1M:I
## PreBefore                                                           
## Sex_1Male                                                           
## InterventionCTestosterone                                           
## PreBefore:Sex_1Male                                                 
## PreBefore:InterventionCTestosterone            0.513                
## Sex_1Male:InterventionCTestosterone            0.467    0.456       
## PreBefore:Sex_1Male:InterventionCTestosterone -0.726   -0.687 -0.652
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.31287462 -0.62168809  0.04883832  0.60603591  2.23693095 
## 
## Number of Observations: 91
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
lsmeans(Model4, pairwise~Pre|Sex_1*InterventionC)
## $lsmeans
## Sex_1 = Female, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  4.524563 1.176768 11 1.934514  7.114612
##  Before 4.251836 1.176768 11 1.661787  6.841884
## 
## Sex_1 = Male, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  8.739225 1.177541 10 6.115501 11.362949
##  Before 9.012229 1.188507 10 6.364070 11.660388
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  6.017677 1.160085 11 3.464349  8.571006
##  Before 4.402293 1.160085 11 1.848964  6.955622
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  7.648316 1.177541 10 5.024592 10.272040
##  Before 7.921043 1.177541 10 5.297319 10.544767
## 
## Confidence level used: 0.95 
## 
## $contrasts
## Sex_1 = Female, InterventionC = Placebo:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before  0.2727273 0.6588743 41   0.414  0.6811
## 
## Sex_1 = Male, InterventionC = Placebo:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before -0.2730041 0.6790292 41  -0.402  0.6897
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before  1.6153846 0.6060762 41   2.665  0.0110
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before -0.2727273 0.6588743 41  -0.414  0.6811
lsmip(Model4,InterventionC~Pre|Sex_1)

Verbal Aggression

Model4 <- lme(fixed=Verbal.Aggression~Pre*Sex_1*InterventionC,random=~1 |ID/Session,data=T_DF.NA2, method="ML")
summary(Model4)
## Linear mixed-effects model fit by maximum likelihood
##  Data: T_DF.NA2 
##        AIC      BIC    logLik
##   401.3351 428.9545 -189.6675
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    2.181625
## 
##  Formula: ~1 | Session %in% ID
##         (Intercept) Residual
## StdDev:   0.7481456 1.494487
## 
## Fixed effects: Verbal.Aggression ~ Pre * Sex_1 * InterventionC 
##                                                   Value Std.Error DF
## (Intercept)                                    7.892168 1.0729000 41
## PreBefore                                     -0.545455 0.6672558 41
## Sex_1Male                                      0.393946 1.5179686 10
## InterventionCTestosterone                      1.275997 0.7240290 32
## PreBefore:Sex_1Male                            1.230903 0.9589514 41
## PreBefore:InterventionCTestosterone           -1.762238 0.9066222 41
## Sex_1Male:InterventionCTestosterone           -0.639633 1.0397234 32
## PreBefore:Sex_1Male:InterventionCTestosterone  1.985881 1.3196786 41
##                                                 t-value p-value
## (Intercept)                                    7.355922  0.0000
## PreBefore                                     -0.817459  0.4184
## Sex_1Male                                      0.259522  0.8005
## InterventionCTestosterone                      1.762356  0.0876
## PreBefore:Sex_1Male                            1.283592  0.2065
## PreBefore:InterventionCTestosterone           -1.943740  0.0588
## Sex_1Male:InterventionCTestosterone           -0.615196  0.5428
## PreBefore:Sex_1Male:InterventionCTestosterone  1.504821  0.1400
##  Correlation: 
##                                               (Intr) PreBfr Sx_1Ml IntrCT
## PreBefore                                     -0.311                     
## Sex_1Male                                     -0.707  0.220              
## InterventionCTestosterone                     -0.366  0.461  0.258       
## PreBefore:Sex_1Male                            0.216 -0.696 -0.306 -0.321
## PreBefore:InterventionCTestosterone            0.229 -0.736 -0.162 -0.626
## Sex_1Male:InterventionCTestosterone            0.255 -0.321 -0.356 -0.696
## PreBefore:Sex_1Male:InterventionCTestosterone -0.157  0.506  0.223  0.430
##                                               PrB:S_1M PB:ICT S_1M:I
## PreBefore                                                           
## Sex_1Male                                                           
## InterventionCTestosterone                                           
## PreBefore:Sex_1Male                                                 
## PreBefore:InterventionCTestosterone            0.512                
## Sex_1Male:InterventionCTestosterone            0.447    0.436       
## PreBefore:Sex_1Male:InterventionCTestosterone -0.727   -0.687 -0.624
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.43919401 -0.38927298  0.09737046  0.58049346  2.07676605 
## 
## Number of Observations: 91
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
lsmeans(Model4, pairwise~Pre|Sex_1*InterventionC)
## $lsmeans
## Sex_1 = Female, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  7.892168 1.072900 11 5.530731 10.253605
##  Before 7.346714 1.072900 11 4.985277  9.708151
## 
## Sex_1 = Male, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  8.286114 1.073832 10 5.893468 10.678760
##  Before 8.971562 1.086829 10 6.549957 11.393167
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  9.168165 1.052345 11 6.851970 11.484361
##  Before 6.860473 1.052345 11 4.544278  9.176668
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  8.922478 1.073832 10 6.529832 11.315123
##  Before 9.831569 1.073832 10 7.438923 12.224214
## 
## Confidence level used: 0.95 
## 
## $contrasts
## Sex_1 = Female, InterventionC = Placebo:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before  0.5454545 0.6672558 41   0.817  0.4184
## 
## Sex_1 = Male, InterventionC = Placebo:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before -0.6854481 0.6887362 41  -0.995  0.3255
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before  2.3076923 0.6137861 41   3.760  0.0005
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before -0.9090909 0.6672558 41  -1.362  0.1805
lsmip(Model4,InterventionC~Pre|Sex_1)

Anger

options(contrasts=c("contr.sum","contr.poly"))
Model4 <- lme(fixed=Anger~Pre*Sex_1*InterventionC,random=~1 |ID/Session,data=T_DF.NA2, method="ML")
summary(Model4)
## Linear mixed-effects model fit by maximum likelihood
##  Data: T_DF.NA2 
##        AIC      BIC    logLik
##   418.0813 445.7008 -198.0407
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    2.319354
## 
##  Formula: ~1 | Session %in% ID
##         (Intercept) Residual
## StdDev:   0.6210482 1.707768
## 
## Fixed effects: Anger ~ Pre * Sex_1 * InterventionC 
##                                Value Std.Error DF   t-value p-value
## (Intercept)                 6.701245 0.7331684 41  9.140117  0.0000
## Pre1                        0.060202 0.1884060 41  0.319535  0.7509
## Sex_11                     -0.255319 0.7331684 10 -0.348241  0.7349
## InterventionC1             -0.414366 0.2131753 32 -1.943779  0.0608
## Pre1:Sex_11                 0.175812 0.1884060 41  0.933153  0.3562
## Pre1:InterventionC1         0.210552 0.1884060 41  1.117544  0.2703
## Sex_11:InterventionC1       0.015480 0.2131753 32  0.072615  0.9426
## Pre1:Sex_11:InterventionC1 -0.128384 0.1884060 41 -0.681423  0.4994
##  Correlation: 
##                            (Intr) Pre1   Sex_11 IntrC1 Pr1:S_11 P1:IC1
## Pre1                       -0.004                                     
## Sex_11                     -0.007  0.004                              
## InterventionC1              0.015 -0.014  0.008                       
## Pre1:Sex_11                 0.004 -0.055 -0.004  0.014                
## Pre1:InterventionC1        -0.004  0.055  0.004 -0.014  0.024         
## Sex_11:InterventionC1       0.008  0.014  0.015 -0.036 -0.014    0.014
## Pre1:Sex_11:InterventionC1  0.004  0.024 -0.004  0.014  0.055   -0.055
##                            S_11:I
## Pre1                             
## Sex_11                           
## InterventionC1                   
## Pre1:Sex_11                      
## Pre1:InterventionC1              
## Sex_11:InterventionC1            
## Pre1:Sex_11:InterventionC1 -0.014
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.28620697 -0.45611486 -0.09021087  0.54395482  2.06876022 
## 
## Number of Observations: 91
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
anova(Model4)
##                         numDF denDF  F-value p-value
## (Intercept)                 1    41 84.13264  <.0001
## Pre                         1    41  0.09429  0.7603
## Sex_1                       1    10  0.11202  0.7448
## InterventionC               1    32  3.73411  0.0622
## Pre:Sex_1                   1    41  0.89173  0.3505
## Pre:InterventionC           1    41  1.16835  0.2861
## Sex_1:InterventionC         1    32  0.00399  0.9500
## Pre:Sex_1:InterventionC     1    41  0.46434  0.4994
lsmeans(Model4, pairwise~Pre|Sex_1*InterventionC)
## $lsmeans
## Sex_1 = Female, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  6.365222 1.146921 10 3.809722  8.920722
##  Before 5.728858 1.146921 10 3.173359  8.284358
## 
## Sex_1 = Male, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  6.750046 1.147886 10 4.192396  9.307695
##  Before 6.303392 1.162792 10 3.712530  8.894254
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  6.998658 1.124212 10 4.493759  9.503558
##  Before 6.690966 1.124212 10 4.186066  9.195866
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  6.931864 1.147886 10 4.374215  9.489513
##  Before 7.840955 1.147886 10 5.283305 10.398604
## 
## Confidence level used: 0.95 
## 
## $contrasts
## Sex_1 = Female, InterventionC = Placebo:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before  0.6363636 0.7624811 41   0.835  0.4088
## 
## Sex_1 = Male, InterventionC = Placebo:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before  0.4466539 0.7855616 41   0.569  0.5727
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before  0.3076923 0.7013806 41   0.439  0.6632
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before -0.9090909 0.7624811 41  -1.192  0.2400
lsmip(Model4,InterventionC~Pre|Sex_1)

Hostility

Model4 <- lme(fixed=Hostility~Pre*Sex_1*InterventionC,random=~1 |ID/Session,data=T_DF.NA2, method="ML")
summary(Model4)
## Linear mixed-effects model fit by maximum likelihood
##  Data: T_DF.NA2 
##        AIC      BIC    logLik
##   383.4122 411.0317 -180.7061
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    2.149448
## 
##  Formula: ~1 | Session %in% ID
##         (Intercept) Residual
## StdDev:    1.046028 1.195227
## 
## Fixed effects: Hostility ~ Pre * Sex_1 * InterventionC 
##                                Value Std.Error DF   t-value p-value
## (Intercept)                 7.100458 0.6834277 41 10.389479  0.0000
## Pre1                        0.174749 0.1321078 41  1.322779  0.1932
## Sex_11                     -0.012620 0.6834277 10 -0.018465  0.9856
## InterventionC1             -0.430935 0.2106004 32 -2.046222  0.0490
## Pre1:Sex_11                 0.281544 0.1321078 41  2.131172  0.0391
## Pre1:InterventionC1        -0.145181 0.1321078 41 -1.098956  0.2782
## Sex_11:InterventionC1      -0.265003 0.2106004 32 -1.258320  0.2174
## Pre1:Sex_11:InterventionC1 -0.129295 0.1321078 41 -0.978707  0.3335
##  Correlation: 
##                            (Intr) Pre1   Sex_11 IntrC1 Pr1:S_11 P1:IC1
## Pre1                       -0.003                                     
## Sex_11                     -0.007  0.003                              
## InterventionC1              0.015 -0.012  0.010                       
## Pre1:Sex_11                 0.003 -0.059 -0.003  0.012                
## Pre1:InterventionC1        -0.003  0.059  0.003 -0.012  0.020         
## Sex_11:InterventionC1       0.010  0.012  0.015 -0.031 -0.012    0.012
## Pre1:Sex_11:InterventionC1  0.003  0.020 -0.003  0.012  0.059   -0.059
##                            S_11:I
## Pre1                             
## Sex_11                           
## InterventionC1                   
## Pre1:Sex_11                      
## Pre1:InterventionC1              
## Sex_11:InterventionC1            
## Pre1:Sex_11:InterventionC1 -0.012
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.51342419 -0.43631181  0.01467211  0.43841887  2.12039068 
## 
## Number of Observations: 91
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
anova(Model4)
##                         numDF denDF   F-value p-value
## (Intercept)                 1    41 108.84685  <.0001
## Pre                         1    41   2.38619  0.1301
## Sex_1                       1    10   0.00091  0.9765
## InterventionC               1    32   4.46537  0.0425
## Pre:Sex_1                   1    41   4.86353  0.0331
## Pre:InterventionC           1    41   1.30833  0.2593
## Sex_1:InterventionC         1    32   1.61373  0.2131
## Pre:Sex_1:InterventionC     1    41   0.95787  0.3335
lsmeans(Model4, pairwise~Pre|Sex_1*InterventionC)
## $lsmeans
## Sex_1 = Female, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  6.573719 1.048283 10 4.237999  8.909439
##  Before 6.210083 1.048283 10 3.874363  8.545803
## 
## Sex_1 = Male, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  6.824465 1.049285 10 4.486512  9.162417
##  Before 7.069826 1.059199 10 4.709783  9.429869
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  8.514545 1.029223 10 6.221293 10.807798
##  Before 7.053007 1.029223 10 4.759754  9.346260
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL  upper.CL
##  After  7.188101 1.049285 10 4.850149  9.526053
##  Before 7.369919 1.049285 10 5.031967  9.707871
## 
## Confidence level used: 0.95 
## 
## $contrasts
## Sex_1 = Female, InterventionC = Placebo:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before  0.3636364 0.5336429 41   0.681  0.4994
## 
## Sex_1 = Male, InterventionC = Placebo:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before -0.2453615 0.5535745 41  -0.443  0.6599
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before  1.4615385 0.4908801 41   2.977  0.0049
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before -0.1818182 0.5336429 41  -0.341  0.7351
lsmip(Model4,InterventionC~Pre|Sex_1)

#Total Risk

Model4 <- lme(fixed=Total.Risk~Pre*Sex_1*InterventionC,random=~1 |ID/Session,data=T_DF.NA2, method="ML")
summary(Model4)
## Linear mixed-effects model fit by maximum likelihood
##  Data: T_DF.NA2 
##        AIC      BIC    logLik
##   735.8626 763.4821 -356.9313
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    16.18329
## 
##  Formula: ~1 | Session %in% ID
##         (Intercept) Residual
## StdDev:   0.8562673 9.984673
## 
## Fixed effects: Total.Risk ~ Pre * Sex_1 * InterventionC 
##                                Value Std.Error DF   t-value p-value
## (Intercept)                122.88101  5.019526 41 24.480602  0.0000
## Pre1                         1.19823  1.100821 41  1.088486  0.2827
## Sex_11                      -8.37550  5.019526 10 -1.668585  0.1262
## InterventionC1              -0.40468  1.117786 32 -0.362041  0.7197
## Pre1:Sex_11                  3.32275  1.100821 41  3.018430  0.0044
## Pre1:InterventionC1         -1.50457  1.100821 41 -1.366770  0.1791
## Sex_11:InterventionC1       -1.02921  1.117786 32 -0.920755  0.3641
## Pre1:Sex_11:InterventionC1  -0.74368  1.100821 41 -0.675571  0.5031
##  Correlation: 
##                            (Intr) Pre1   Sex_11 IntrC1 Pr1:S_11 P1:IC1
## Pre1                       -0.003                                     
## Sex_11                     -0.004  0.003                              
## InterventionC1              0.012 -0.014  0.006                       
## Pre1:Sex_11                 0.003 -0.054 -0.003  0.014                
## Pre1:InterventionC1        -0.003  0.054  0.003 -0.014  0.025         
## Sex_11:InterventionC1       0.006  0.014  0.012 -0.037 -0.014    0.014
## Pre1:Sex_11:InterventionC1  0.003  0.025 -0.003  0.014  0.054   -0.054
##                            S_11:I
## Pre1                             
## Sex_11                           
## InterventionC1                   
## Pre1:Sex_11                      
## Pre1:InterventionC1              
## Sex_11:InterventionC1            
## Pre1:Sex_11:InterventionC1 -0.014
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.58275535 -0.54790763  0.06764513  0.42338187  3.94295963 
## 
## Number of Observations: 91
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
anova(Model4)
##                         numDF denDF  F-value p-value
## (Intercept)                 1    41 599.2693  <.0001
## Pre                         1    41   1.8888  0.1768
## Sex_1                       1    10   2.7057  0.1310
## InterventionC               1    32   0.1991  0.6585
## Pre:Sex_1                   1    41   9.5322  0.0036
## Pre:InterventionC           1    41   1.9399  0.1712
## Sex_1:InterventionC         1    32   0.8658  0.3591
## Pre:Sex_1:InterventionC     1    41   0.4564  0.5031
lsmeans(Model4, pairwise~Pre|Sex_1*InterventionC)
## $lsmeans
## Sex_1 = Female, InterventionC = Placebo:
##  Pre      lsmean       SE df  lower.CL upper.CL
##  After  115.3443 7.613207 10  98.38106 132.3076
##  Before 110.7989 7.613207 10  93.83561 127.7622
## 
## Sex_1 = Male, InterventionC = Placebo:
##  Pre      lsmean       SE df  lower.CL upper.CL
##  After  128.9956 7.617606 10 112.02255 145.9687
##  Before 134.7664 7.687990 10 117.63654 151.8964
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  Pre      lsmean       SE df  lower.CL upper.CL
##  After  122.7086 7.509607 10 105.97618 139.4411
##  Before 109.1702 7.509607 10  92.43772 125.9026
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  Pre      lsmean       SE df  lower.CL upper.CL
##  After  129.2684 7.617606 10 112.29527 146.2414
##  Before 131.9956 7.617606 10 115.02255 148.9687
## 
## Confidence level used: 0.95 
## 
## $contrasts
## Sex_1 = Female, InterventionC = Placebo:
##  contrast        estimate       SE df t.ratio p.value
##  After - Before  4.545455 4.457939 41   1.020  0.3139
## 
## Sex_1 = Male, InterventionC = Placebo:
##  contrast        estimate       SE df t.ratio p.value
##  After - Before -5.770820 4.581853 41  -1.259  0.2150
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  contrast        estimate       SE df t.ratio p.value
##  After - Before 13.538462 4.100708 41   3.301  0.0020
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  contrast        estimate       SE df t.ratio p.value
##  After - Before -2.727273 4.457939 41  -0.612  0.5441
lsmip(Model4,InterventionC~Pre|Sex_1)

Financial Risk

Model4 <- lme(fixed=Finacial.Risk~Pre*Sex_1*InterventionC,random=~1 |ID/Session,data=T_DF.NA2, method="ML")
summary(Model4)
## Linear mixed-effects model fit by maximum likelihood
##  Data: T_DF.NA2 
##       AIC      BIC    logLik
##   503.375 530.9945 -240.6875
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    3.597261
## 
##  Formula: ~1 | Session %in% ID
##         (Intercept) Residual
## StdDev:    1.220844 2.672917
## 
## Fixed effects: Finacial.Risk ~ Pre * Sex_1 * InterventionC 
##                                Value Std.Error DF   t-value p-value
## (Intercept)                17.847788 1.1439204 41 15.602299  0.0000
## Pre1                       -0.117701 0.2949821 41 -0.399009  0.6920
## Sex_11                     -2.883152 1.1439204 10 -2.520413  0.0304
## InterventionC1             -0.466859 0.3530446 32 -1.322380  0.1954
## Pre1:Sex_11                 0.463854 0.2949821 41  1.572483  0.1235
## Pre1:InterventionC1        -0.259309 0.2949821 41 -0.879067  0.3845
## Sex_11:InterventionC1      -0.457505 0.3530446 32 -1.295884  0.2043
## Pre1:Sex_11:InterventionC1 -0.086845 0.2949821 41 -0.294408  0.7699
##  Correlation: 
##                            (Intr) Pre1   Sex_11 IntrC1 Pr1:S_11 P1:IC1
## Pre1                       -0.004                                     
## Sex_11                     -0.007  0.004                              
## InterventionC1              0.016 -0.014  0.009                       
## Pre1:Sex_11                 0.004 -0.056 -0.004  0.014                
## Pre1:InterventionC1        -0.004  0.056  0.004 -0.014  0.023         
## Sex_11:InterventionC1       0.009  0.014  0.016 -0.035 -0.014    0.014
## Pre1:Sex_11:InterventionC1  0.004  0.023 -0.004  0.014  0.056   -0.056
##                            S_11:I
## Pre1                             
## Sex_11                           
## InterventionC1                   
## Pre1:Sex_11                      
## Pre1:InterventionC1              
## Sex_11:InterventionC1            
## Pre1:Sex_11:InterventionC1 -0.014
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.7551738 -0.3660375 -0.1168382  0.3643547  3.9662413 
## 
## Number of Observations: 91
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
anova(Model4)
##                         numDF denDF   F-value p-value
## (Intercept)                 1    41 243.71657  <.0001
## Pre                         1    41   0.05741  0.8118
## Sex_1                       1    10   6.14615  0.0326
## InterventionC               1    32   1.94968  0.1722
## Pre:Sex_1                   1    41   2.55483  0.1176
## Pre:InterventionC           1    41   0.77459  0.3839
## Sex_1:InterventionC         1    32   1.69009  0.2029
## Pre:Sex_1:InterventionC     1    41   0.08668  0.7699
lsmeans(Model4, pairwise~Pre|Sex_1*InterventionC)
## $lsmeans
## Sex_1 = Female, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  14.04027 1.798399 10 10.03319 18.04736
##  Before 14.04027 1.798399 10 10.03319 18.04736
## 
## Sex_1 = Male, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  19.96757 1.800037 10 15.95683 23.97830
##  Before 21.47560 1.824318 10 17.41077 25.54044
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  16.58131 1.760476 10 12.65872 20.50389
##  Before 15.19669 1.760476 10 11.27411 19.11928
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  20.33120 1.800037 10 16.32047 24.34194
##  Before 21.14938 1.800037 10 17.13865 25.16012
## 
## Confidence level used: 0.95 
## 
## $contrasts
## Sex_1 = Female, InterventionC = Placebo:
##  contrast            estimate       SE df t.ratio p.value
##  After - Before -1.332268e-15 1.193399 41   0.000  1.0000
## 
## Sex_1 = Male, InterventionC = Placebo:
##  contrast            estimate       SE df t.ratio p.value
##  After - Before -1.508038e+00 1.231027 41  -1.225  0.2276
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  contrast            estimate       SE df t.ratio p.value
##  After - Before  1.384615e+00 1.097768 41   1.261  0.2143
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  contrast            estimate       SE df t.ratio p.value
##  After - Before -8.181818e-01 1.193399 41  -0.686  0.4968
lsmip(Model4,InterventionC~Pre|Sex_1)

Ethical Risk

Model4 <- lme(fixed=Ethical.Risk~Pre*Sex_1*InterventionC,random=~1 |ID/Session,data=T_DF.NA2, method="ML")
summary(Model4)
## Linear mixed-effects model fit by maximum likelihood
##  Data: T_DF.NA2 
##        AIC      BIC    logLik
##   517.5502 545.1696 -247.7751
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    3.955385
## 
##  Formula: ~1 | Session %in% ID
##          (Intercept) Residual
## StdDev: 0.0003743887 3.108673
## 
## Fixed effects: Ethical.Risk ~ Pre * Sex_1 * InterventionC 
##                                Value Std.Error DF   t-value p-value
## (Intercept)                19.427060 1.2451138 41 15.602637  0.0000
## Pre1                        0.479160 0.3427107 41  1.398149  0.1696
## Sex_11                     -1.460429 1.2451138 10 -1.172928  0.2680
## InterventionC1             -0.263292 0.3454198 32 -0.762237  0.4515
## Pre1:Sex_11                 0.648462 0.3427107 41  1.892156  0.0655
## Pre1:InterventionC1        -0.603007 0.3427107 41 -1.759523  0.0859
## Sex_11:InterventionC1      -0.387139 0.3454198 32 -1.120778  0.2707
## Pre1:Sex_11:InterventionC1 -0.115524 0.3427107 41 -0.337089  0.7378
##  Correlation: 
##                            (Intr) Pre1   Sex_11 IntrC1 Pr1:S_11 P1:IC1
## Pre1                       -0.004                                     
## Sex_11                     -0.006  0.004                              
## InterventionC1              0.015 -0.014  0.008                       
## Pre1:Sex_11                 0.004 -0.054 -0.004  0.014                
## Pre1:InterventionC1        -0.004  0.054  0.004 -0.014  0.025         
## Sex_11:InterventionC1       0.008  0.014  0.015 -0.037 -0.014    0.014
## Pre1:Sex_11:InterventionC1  0.004  0.025 -0.004  0.014  0.054   -0.054
##                            S_11:I
## Pre1                             
## Sex_11                           
## InterventionC1                   
## Pre1:Sex_11                      
## Pre1:InterventionC1              
## Sex_11:InterventionC1            
## Pre1:Sex_11:InterventionC1 -0.014
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.5973768 -0.4497526 -0.1082360  0.4969251  3.0938972 
## 
## Number of Observations: 91
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
anova(Model4)
##                         numDF denDF   F-value p-value
## (Intercept)                 1    41 243.74789  <.0001
## Pre                         1    41   2.65428  0.1109
## Sex_1                       1    10   1.29627  0.2814
## InterventionC               1    32   0.72052  0.4023
## Pre:Sex_1                   1    41   3.79764  0.0582
## Pre:InterventionC           1    41   3.11602  0.0850
## Sex_1:InterventionC         1    32   1.26715  0.2687
## Pre:Sex_1:InterventionC     1    41   0.11363  0.7378
lsmeans(Model4, pairwise~Pre|Sex_1*InterventionC)
## $lsmeans
## Sex_1 = Female, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  17.72529 1.957243 10 13.36428 22.08630
##  Before 16.90711 1.957243 10 12.54610 21.26812
## 
## Sex_1 = Male, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  20.35455 1.958758 10 15.99017 24.71894
##  Before 21.66812 1.985030 10 17.24520 26.09104
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  20.46322 1.918366 10 16.18883 24.73760
##  Before 16.77091 1.918366 10 12.49652 21.04529
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  21.08182 1.958758 10 16.71744 25.44621
##  Before 20.44546 1.958758 10 16.08108 24.80984
## 
## Confidence level used: 0.95 
## 
## $contrasts
## Sex_1 = Female, InterventionC = Placebo:
##  contrast         estimate       SE df t.ratio p.value
##  After - Before  0.8181818 1.387955 41   0.589  0.5588
## 
## Sex_1 = Male, InterventionC = Placebo:
##  contrast         estimate       SE df t.ratio p.value
##  After - Before -1.3135695 1.426168 41  -0.921  0.3624
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  contrast         estimate       SE df t.ratio p.value
##  After - Before  3.6923077 1.276733 41   2.892  0.0061
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  contrast         estimate       SE df t.ratio p.value
##  After - Before  0.6363636 1.387955 41   0.458  0.6490
lsmip(Model4,InterventionC~Pre|Sex_1)

Health_Safety risk

Model4 <- lme(fixed=Health_Safety.Risk~Pre*Sex_1*InterventionC,random=~1 |ID/Session,data=T_DF.NA2, method="ML")
summary(Model4)
## Linear mixed-effects model fit by maximum likelihood
##  Data: T_DF.NA2 
##        AIC      BIC    logLik
##   486.8408 514.4603 -232.4204
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    4.324106
## 
##  Formula: ~1 | Session %in% ID
##         (Intercept) Residual
## StdDev:   0.8125637  2.42408
## 
## Fixed effects: Health_Safety.Risk ~ Pre * Sex_1 * InterventionC 
##                                Value Std.Error DF   t-value p-value
## (Intercept)                22.366692 1.3410361 41 16.678665  0.0000
## Pre1                        0.337761 0.2674136 41  1.263066  0.2137
## Sex_11                     -0.392460 1.3410361 10 -0.292654  0.7758
## InterventionC1              0.046093 0.2979223 32  0.154716  0.8780
## Pre1:Sex_11                 0.489162 0.2674136 41  1.829235  0.0746
## Pre1:InterventionC1        -0.125526 0.2674136 41 -0.469407  0.6413
## Sex_11:InterventionC1      -0.105308 0.2979223 32 -0.353475  0.7261
## Pre1:Sex_11:InterventionC1 -0.201397 0.2674136 41 -0.753130  0.4557
##  Correlation: 
##                            (Intr) Pre1   Sex_11 IntrC1 Pr1:S_11 P1:IC1
## Pre1                       -0.003                                     
## Sex_11                     -0.004  0.003                              
## InterventionC1              0.012 -0.014  0.006                       
## Pre1:Sex_11                 0.003 -0.055 -0.003  0.014                
## Pre1:InterventionC1        -0.003  0.055  0.003 -0.014  0.024         
## Sex_11:InterventionC1       0.006  0.014  0.012 -0.035 -0.014    0.014
## Pre1:Sex_11:InterventionC1  0.003  0.024 -0.003  0.014  0.055   -0.055
##                            S_11:I
## Pre1                             
## Sex_11                           
## InterventionC1                   
## Pre1:Sex_11                      
## Pre1:InterventionC1              
## Sex_11:InterventionC1            
## Pre1:Sex_11:InterventionC1 -0.014
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.69178992 -0.42644215 -0.01037085  0.48637162  3.67093205 
## 
## Number of Observations: 91
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
anova(Model4)
##                         numDF denDF   F-value p-value
## (Intercept)                 1    41 278.19743  <.0001
## Pre                         1    41   2.04751  0.1600
## Sex_1                       1    10   0.08136  0.7813
## InterventionC               1    32   0.01473  0.9042
## Pre:Sex_1                   1    41   3.54650  0.0668
## Pre:InterventionC           1    41   0.25685  0.6150
## Sex_1:InterventionC         1    32   0.13253  0.7182
## Pre:Sex_1:InterventionC     1    41   0.56721  0.4557
lsmeans(Model4, pairwise~Pre|Sex_1*InterventionC)
## $lsmeans
## Sex_1 = Female, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  22.41502 2.018634 10 17.91722 26.91281
##  Before 21.41502 2.018634 10 16.91722 25.91281
## 
## Sex_1 = Male, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  22.83502 2.019814 10 18.33460 27.33545
##  Before 22.98608 2.036733 10 18.44796 27.52421
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  23.18729 1.993176 10 18.74622 27.62836
##  Before 20.87960 1.993176 10 16.43853 25.32067
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  22.38048 2.019814 10 17.88005 26.88090
##  Before 22.83502 2.019814 10 18.33460 27.33545
## 
## Confidence level used: 0.95 
## 
## $contrasts
## Sex_1 = Female, InterventionC = Placebo:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before  1.0000000 1.0822992 41   0.924  0.3609
## 
## Sex_1 = Male, InterventionC = Placebo:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before -0.1510600 1.1147811 41  -0.136  0.8929
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before  2.3076923 0.9955705 41   2.318  0.0255
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before -0.4545455 1.0822992 41  -0.420  0.6767
lsmip(Model4,InterventionC~Pre|Sex_1)

Model4 <- lme(fixed=Recreational.Risk~Pre*Sex_1*InterventionC,random=~1 |ID/Session,data=T_DF.NA2, method="ML")
summary(Model4)
## Linear mixed-effects model fit by maximum likelihood
##  Data: T_DF.NA2 
##       AIC      BIC   logLik
##   513.192 540.8115 -245.596
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    6.473518
## 
##  Formula: ~1 | Session %in% ID
##         (Intercept) Residual
## StdDev:    1.682729 2.442329
## 
## Fixed effects: Recreational.Risk ~ Pre * Sex_1 * InterventionC 
##                               Value Std.Error DF   t-value p-value
## (Intercept)                32.88364 1.9934830 41 16.495572  0.0000
## Pre1                        0.16713 0.2697859 41  0.619484  0.5390
## Sex_11                     -1.75055 1.9934830 10 -0.878137  0.4005
## InterventionC1              0.19961 0.3781087 32  0.527904  0.6012
## Pre1:Sex_11                 0.87833 0.2697859 41  3.255643  0.0023
## Pre1:InterventionC1        -0.21924 0.2697859 41 -0.812628  0.4211
## Sex_11:InterventionC1      -0.10250 0.3781087 32 -0.271093  0.7881
## Pre1:Sex_11:InterventionC1 -0.23531 0.2697859 41 -0.872209  0.3882
##  Correlation: 
##                            (Intr) Pre1   Sex_11 IntrC1 Pr1:S_11 P1:IC1
## Pre1                       -0.002                                     
## Sex_11                     -0.003  0.002                              
## InterventionC1              0.009 -0.013  0.006                       
## Pre1:Sex_11                 0.002 -0.057 -0.002  0.013                
## Pre1:InterventionC1        -0.002  0.057  0.002 -0.013  0.021         
## Sex_11:InterventionC1       0.006  0.013  0.009 -0.032 -0.013    0.013
## Pre1:Sex_11:InterventionC1  0.002  0.021 -0.002  0.013  0.057   -0.057
##                            S_11:I
## Pre1                             
## Sex_11                           
## InterventionC1                   
## Pre1:Sex_11                      
## Pre1:InterventionC1              
## Sex_11:InterventionC1            
## Pre1:Sex_11:InterventionC1 -0.013
## 
## Standardized Within-Group Residuals:
##          Min           Q1          Med           Q3          Max 
## -2.365962669 -0.552012559  0.006438086  0.498206336  2.643651873 
## 
## Number of Observations: 91
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
anova(Model4)
##                         numDF denDF   F-value p-value
## (Intercept)                 1    41 271.78081  <.0001
## Pre                         1    41   0.81537  0.3718
## Sex_1                       1    10   0.76032  0.4037
## InterventionC               1    32   0.23026  0.6346
## Pre:Sex_1                   1    41  11.09037  0.0018
## Pre:InterventionC           1    41   0.74097  0.3944
## Sex_1:InterventionC         1    32   0.07978  0.7794
## Pre:Sex_1:InterventionC     1    41   0.76075  0.3882
lsmeans(Model4, pairwise~Pre|Sex_1*InterventionC)
## $lsmeans
## Sex_1 = Female, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  31.82110 2.923242 10 25.30771 38.33449
##  Before 30.63929 2.923242 10 24.12590 37.15267
## 
## Sex_1 = Male, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  34.24118 2.924605 10 27.72475 40.75760
##  Before 35.63143 2.938509 10 29.08402 42.17883
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  32.53599 2.899541 10 26.07541 38.99657
##  Before 29.53599 2.899541 10 23.07541 35.99657
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  33.60481 2.924605 10 27.08839 40.12124
##  Before 35.05936 2.924605 10 28.54293 41.57579
## 
## Confidence level used: 0.95 
## 
## $contrasts
## Sex_1 = Female, InterventionC = Placebo:
##  contrast        estimate       SE df t.ratio p.value
##  After - Before  1.181818 1.090447 41   1.084  0.2848
## 
## Sex_1 = Male, InterventionC = Placebo:
##  contrast        estimate       SE df t.ratio p.value
##  After - Before -1.390249 1.128679 41  -1.232  0.2251
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  contrast        estimate       SE df t.ratio p.value
##  After - Before  3.000000 1.003065 41   2.991  0.0047
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  contrast        estimate       SE df t.ratio p.value
##  After - Before -1.454545 1.090447 41  -1.334  0.1896
lsmip(Model4,InterventionC~Pre|Sex_1)

Model4 <- lme(fixed=Social~Pre*Sex_1*InterventionC,random=~1 |ID/Session,data=T_DF.NA2, method="ML") #Social Risk
summary(Model4)
## Linear mixed-effects model fit by maximum likelihood
##  Data: T_DF.NA2 
##        AIC      BIC    logLik
##   468.0657 495.6851 -223.0328
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    3.935943
## 
##  Formula: ~1 | Session %in% ID
##         (Intercept) Residual
## StdDev:    1.574873 1.890705
## 
## Fixed effects: Social ~ Pre * Sex_1 * InterventionC 
##                                Value Std.Error DF   t-value p-value
## (Intercept)                30.365879 1.2335552 41 24.616555  0.0000
## Pre1                        0.320071 0.2089532 41  1.531782  0.1333
## Sex_11                     -1.902173 1.2335552 10 -1.542025  0.1541
## InterventionC1              0.072304 0.3236451 32  0.223404  0.8246
## Pre1:Sex_11                 0.854754 0.2089532 41  4.090649  0.0002
## Pre1:InterventionC1        -0.309300 0.2089532 41 -1.480235  0.1465
## Sex_11:InterventionC1      -0.007834 0.3236451 32 -0.024207  0.9808
## Pre1:Sex_11:InterventionC1 -0.092798 0.2089532 41 -0.444110  0.6593
##  Correlation: 
##                            (Intr) Pre1   Sex_11 IntrC1 Pr1:S_11 P1:IC1
## Pre1                       -0.003                                     
## Sex_11                     -0.005  0.003                              
## InterventionC1              0.013 -0.012  0.009                       
## Pre1:Sex_11                 0.003 -0.058 -0.003  0.012                
## Pre1:InterventionC1        -0.003  0.058  0.003 -0.012  0.020         
## Sex_11:InterventionC1       0.009  0.012  0.013 -0.031 -0.012    0.012
## Pre1:Sex_11:InterventionC1  0.003  0.020 -0.003  0.012  0.058   -0.058
##                            S_11:I
## Pre1                             
## Sex_11                           
## InterventionC1                   
## Pre1:Sex_11                      
## Pre1:InterventionC1              
## Sex_11:InterventionC1            
## Pre1:Sex_11:InterventionC1 -0.012
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -1.43182407 -0.51978560 -0.02934255  0.57896508  1.94272833 
## 
## Number of Observations: 91
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
anova(Model4)
##                         numDF denDF  F-value p-value
## (Intercept)                 1    41 605.1353  <.0001
## Pre                         1    41   3.6020  0.0648
## Sex_1                       1    10   2.3383  0.1572
## InterventionC               1    32   0.0265  0.8717
## Pre:Sex_1                   1    41  17.3096  0.0002
## Pre:InterventionC           1    41   2.2756  0.1391
## Sex_1:InterventionC         1    32   0.0009  0.9765
## Pre:Sex_1:InterventionC     1    41   0.1972  0.6593
lsmeans(Model4, pairwise~Pre|Sex_1*InterventionC)
## $lsmeans
## Sex_1 = Female, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  29.30090 1.855291 10 25.16706 33.43475
##  Before 27.75545 1.855291 10 23.62160 31.88929
## 
## Sex_1 = Male, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  31.59701 1.856729 10 27.45995 35.73406
##  Before 33.09938 1.870565 10 28.93150 37.26725
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  29.97616 1.829493 10 25.89980 34.05252
##  Before 26.82231 1.829493 10 22.74595 30.89868
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  31.86973 1.856729 10 27.73268 36.00678
##  Before 32.50610 1.856729 10 28.36905 36.64315
## 
## Confidence level used: 0.95 
## 
## $contrasts
## Sex_1 = Female, InterventionC = Placebo:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before  1.5454545 0.8441587 41   1.831  0.0744
## 
## Sex_1 = Male, InterventionC = Placebo:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before -1.5023703 0.8753013 41  -1.716  0.0936
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before  3.1538462 0.7765130 41   4.062  0.0002
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  contrast         estimate        SE df t.ratio p.value
##  After - Before -0.6363636 0.8441587 41  -0.754  0.4553
lsmip(Model4,InterventionC~Pre|Sex_1)

Model4 <- lme(fixed=Empathy~Pre*Sex_1*InterventionC,random=~1 |ID/Session,data=T_DF.NA2, method="ML")
summary(Model4)
## Linear mixed-effects model fit by maximum likelihood
##  Data: T_DF.NA2 
##        AIC      BIC    logLik
##   569.3296 596.9491 -273.6648
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:    12.22933
## 
##  Formula: ~1 | Session %in% ID
##         (Intercept) Residual
## StdDev:    2.996947 2.844551
## 
## Fixed effects: Empathy ~ Pre * Sex_1 * InterventionC 
##                               Value Std.Error DF   t-value p-value
## (Intercept)                37.22673  3.740190 41  9.953165  0.0000
## Pre1                       -0.92165  0.314583 41 -2.929748  0.0055
## Sex_11                      4.21454  3.740190 10  1.126825  0.2861
## InterventionC1             -0.14401  0.565215 32 -0.254789  0.8005
## Pre1:Sex_11                -0.14129  0.314583 41 -0.449127  0.6557
## Pre1:InterventionC1        -0.42689  0.314583 41 -1.357015  0.1822
## Sex_11:InterventionC1      -0.56074  0.565215 32 -0.992075  0.3286
## Pre1:Sex_11:InterventionC1 -0.32835  0.314583 41 -1.043765  0.3027
##  Correlation: 
##                            (Intr) Pre1   Sex_11 IntrC1 Pr1:S_11 P1:IC1
## Pre1                       -0.002                                     
## Sex_11                     -0.002  0.002                              
## InterventionC1              0.007 -0.011  0.005                       
## Pre1:Sex_11                 0.002 -0.060 -0.002  0.011                
## Pre1:InterventionC1        -0.002  0.060  0.002 -0.011  0.019         
## Sex_11:InterventionC1       0.005  0.011  0.007 -0.029 -0.011    0.011
## Pre1:Sex_11:InterventionC1  0.002  0.019 -0.002  0.011  0.060   -0.060
##                            S_11:I
## Pre1                             
## Sex_11                           
## InterventionC1                   
## Pre1:Sex_11                      
## Pre1:InterventionC1              
## Sex_11:InterventionC1            
## Pre1:Sex_11:InterventionC1 -0.011
## 
## Standardized Within-Group Residuals:
##           Min            Q1           Med            Q3           Max 
## -2.0199431541 -0.5239276791  0.0003454672  0.4477106074  2.3362976533 
## 
## Number of Observations: 91
## Number of Groups: 
##              ID Session %in% ID 
##              12              46
anova(Model4)
##                         numDF denDF  F-value p-value
## (Intercept)                 1    41 99.18197  <.0001
## Pre                         1    41  8.13204  0.0068
## Sex_1                       1    10  1.28879  0.2827
## InterventionC               1    32  0.07990  0.7793
## Pre:Sex_1                   1    41  0.13452  0.7157
## Pre:InterventionC           1    41  1.99129  0.1657
## Sex_1:InterventionC         1    32  1.00812  0.3229
## Pre:Sex_1:InterventionC     1    41  1.08944  0.3027
lsmeans(Model4, pairwise~Pre|Sex_1*InterventionC)
## $lsmeans
## Sex_1 = Female, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  38.91834 5.390290 10 26.90803 50.92866
##  Before 42.55471 5.390290 10 30.54439 54.56502
## 
## Sex_1 = Male, InterventionC = Placebo:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  32.55001 5.392005 10 20.53587 44.56414
##  Before 34.30782 5.403551 10 22.26796 46.34768
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  41.83832 5.365291 10 29.88371 53.79294
##  Before 42.45371 5.365291 10 30.49910 54.40832
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  Pre      lsmean       SE df lower.CL upper.CL
##  After  31.91364 5.392005 10 19.89951 43.92778
##  Before 33.27728 5.392005 10 21.26315 45.29142
## 
## Confidence level used: 0.95 
## 
## $contrasts
## Sex_1 = Female, InterventionC = Placebo:
##  contrast         estimate       SE df t.ratio p.value
##  After - Before -3.6363636 1.270030 41  -2.863  0.0066
## 
## Sex_1 = Male, InterventionC = Placebo:
##  contrast         estimate       SE df t.ratio p.value
##  After - Before -1.7578093 1.320161 41  -1.332  0.1904
## 
## Sex_1 = Female, InterventionC = Testosterone:
##  contrast         estimate       SE df t.ratio p.value
##  After - Before -0.6153846 1.168258 41  -0.527  0.6012
## 
## Sex_1 = Male, InterventionC = Testosterone:
##  contrast         estimate       SE df t.ratio p.value
##  After - Before -1.3636364 1.270030 41  -1.074  0.2892
lsmip(Model4,InterventionC~Pre|Sex_1)

##Plots of Time

  #Both conditions
  p1 <- ggplot(T_DF.NA,aes(y=Test,x=Time,color=InterventionC)) + geom_point() + geom_smooth()
  p1

  #Testosterone Only -- seperated by Sex
  p1.b <- ggplot(subset(T_DF,InterventionC=="Testosterone"),aes(y=Test,x=Time,color=Sex_1)) + geom_point() + geom_smooth()
  p1.b
## Warning: Removed 5 rows containing non-finite values (stat_smooth).
## Warning: Removed 5 rows containing missing values (geom_point).

  #Log Transformed
  p2 <- ggplot(T_DF.NA,aes(y=Test.l,x=Time,color=InterventionC)) + geom_point() + geom_smooth()
  p2

#Total Aggression
  
  #All data
  p3 <- ggplot(subset(T_DF.NA2,InterventionC=="Testosterone"),aes(y=Test.l,x=Total.Aggression)) + geom_point(size=2) + geom_smooth(method="lm",se=TRUE)
  p3

  #Seperated by ID
  p3 <- ggplot(subset(T_DF.NA2,InterventionC=="Testosterone"),aes(y=Test.l,x=Total.Aggression,color=ID)) + geom_point(size=2) + geom_smooth(method="lm",se=FALSE)
  p3

    p3 <- ggplot(subset(T_DF.NA2,Sex_1=="Male" & InterventionC=="Testosterone"),aes(y=Test.l,x=Total.Aggression,color=ID)) + geom_point(size=2) + geom_smooth(method="lm",se=FALSE)
  p3

  #Seperate Plots for each individual
    uni <- unique(T_DF.NA2$ID)

    for (i in 1:length(uni)) {
        p3 <- ggplot(subset(T_DF.NA2,InterventionC=="Testosterone" & ID==uni[i]),aes(y=Test.l,x=Total.Aggression,color=ID,linetype=Session)) + geom_point(size=2) + geom_smooth(method="lm",se=FALSE); print(p3)
    }