MM1<-function(Arrival_Rate,Service_Rate,servers)
{
lambda <- 1/Arrival_Rate
mu <- 1/Service_Rate
p <- lambda / (mu*servers)
L <- p/(1-p)
W <- L/lambda
es <- 1/mu
Wq <- W-es
Lq <- lambda*Wq
df<-data.frame(p,L,W,Wq,Lq)
return (df)
}
MD1<-function(mu,lambda)
{
n1 <- mu - lambda
list1=list(
p <-lambda / mu,
Lq = ( lambda * lambda ) / ( 2 * mu * n1 ),
L = ( lambda * lambda ) / ( 2 * mu * n1 ) + lambda / mu,
Wq=lambda / ( 2 * mu * n1 ),
W=( lambda / ( 2 * mu * n1 )) + (1 / mu )
)
return(list1)
}
MD1((1/0.9),1)
## [[1]]
## [1] 0.9
##
## $Lq
## [1] 4.05
##
## $L
## [1] 4.95
##
## $Wq
## [1] 4.05
##
## $W
## [1] 4.95
MM1(0.9,1,1)
## p L W Wq Lq
## 1 1.111111 -10 -9 -10 -11.11111
As we can see queues from MM1 exceed that of MD1.
Question 15
Here in simio chosen time is 10 hours and 1 hour warming up period.
Below is scrren of simio result.
Simio output