Preliminaries.
## [1] "dplyr" "langcog" "tidyr" "ggplot2" "lme4"
##
## Attaching package: 'langcog'
## The following object is masked from 'package:base':
##
## scale
## Loading tidyverse: ggplot2
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Loading tidyverse: dplyr
## Conflicts with tidy packages ----------------------------------------------
## %+%(): ggplot2, psych
## alpha(): ggplot2, psych
## filter(): dplyr, stats
## lag(): dplyr, stats
##
## Attaching package: 'ggthemes'
## The following objects are masked from 'package:langcog':
##
## scale_color_solarized, scale_colour_solarized,
## scale_fill_solarized
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following object is masked from 'package:tidyr':
##
## expand
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
## This is lavaan 0.5-23.1097
## lavaan is BETA software! Please report any bugs.
##
## Attaching package: 'lavaan'
## The following object is masked from 'package:langcog':
##
## sem
## sROC 0.1-2 loaded
##
## Attaching package: 'MVN'
## The following object is masked from 'package:psych':
##
## mardia
Read in participant data.
data <- read.csv("../cdm_paq.csv", header =TRUE)
dem <- read.csv("../cdm_paq_dem.csv", header =TRUE)
labels <- read.csv("sent_forms.csv")
labels$sent <- as.character(labels$sent)
questions <- data %>%
filter(Status == "Response Type")%>%
select(Q1:Q28)%>%
gather("item", "sent", Q1:Q28)
d <- data %>%
filter(Finished == 1)%>%
mutate(sid = ResponseId)%>%
select(-Status, -StartDate, - EndDate, - IPAddress, -Progress, -Duration..in.seconds., -Finished, - ResponseId, - RecordedDate, -RecipientLastName, -RecipientFirstName, - RecipientEmail, -ExternalReference, -LocationLatitude, -LocationLongitude, - DistributionChannel)%>%
select(sid, Q1:Q28)%>%
gather("item", "rating", Q1:Q28)%>%
left_join(questions)
subinfo <- dem %>%
filter(Finished == "TRUE")%>%
transmute(sid = ResponseId, ethnicity = Q25.1, parent_ed = Q26.1, parent_age = Q27.1, parent_gender = Q28.1, num_kids = Q29, oldest_kid = Q30, youngest_kid = Q32, only_kid = Q33)
Make data frames.
d$sent <- stringr::str_replace_all(d$sent, "\x89Ûª", "")
dq <- d %>%
left_join(labels)
#rescore reverse coded items
dq$rating <- as.numeric(dq$rating)
dq$rating[dq$reverse_code == 1] <- 8 - dq$rating[dq$reverse_code == 1]
Test for normality.
dq_wide <- dq %>%
select(sid, short_sent, rating)%>%
spread(short_sent, rating)
x_vars <- dq_wide %>%
select(-sid)
uniPlot(x_vars[1:10], type = "histogram")
uniPlot(x_vars[11:20], type = "histogram")
uniPlot(x_vars[21:24], type = "histogram")
Data for most PAQ questions violate normality assumption. We should transform them for looking at factor analysis.
Look at factor structure with CFA.
Get mean ratings for sentences.
dq$rating <- dq$rating - 1
ms <- dq %>%
group_by(category, short_sent, reverse_code) %>%
multi_boot_standard(col = "rating", na.rm = TRUE) %>%
arrange(category, desc(mean))
ms$short_sent_ord <- factor(ms$short_sent,
levels = ms$short_sent)
short_sent_ord <- ms$short_sent_ord
Plot responses to individual questionnaire items.
qplot(short_sent_ord, mean, col = category,
ymin = ci_lower, ymax = ci_upper, pch = factor(reverse_code),
geom = "pointrange",
data = ms) +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = .5)) +
xlab("") +
ylab("Mean Rating") +
ylim(c(0,6)) +
scale_colour_solarized()
Compare to Mturk samples. We are comparing the data collected from CDM parents to experiment 9 (parents and non-parents) of the questionnaire norming study and the data from the parenting behaviors study (self-reported parents).
cdm <- ms %>%
ungroup()%>%
select(category, short_sent, mean, ci_upper, ci_lower)%>%
mutate(sample = "cdm")
load("e9.RData")
load("beh.RData")
beh_d <- beh %>%
ungroup()%>%
mutate(category = category_paq)%>%
select(category, short_sent, mean, ci_upper, ci_lower)%>%
mutate(sample = "beh")
atts <- c("AA", "EL","RR")
e9_d <- e9 %>%
filter(category %in% atts)%>%
ungroup()%>%
select(category, short_sent, mean, ci_upper, ci_lower)%>%
mutate(sample = "e9")
samp_compare <- beh_d %>%
bind_rows(e9_d)%>%
bind_rows(cdm)
samp_compare$short_sent <- factor(samp_compare$short_sent, levels = short_sent_ord)
qplot(short_sent, mean, col = sample,
ymin = ci_lower, ymax = ci_upper,
geom = "pointrange",
data = samp_compare) +
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = .5)) +
xlab("") +
ylab("Mean Rating") +
ylim(c(0,6)) +
scale_colour_solarized()
CDM parents agree more with EL items related to exploration and play but less on teaching math before school compared to Mturk. They also rate RR items quite a bit lower than Mturk samples.
In general there is a bit more variability in agreement with items within subscales compared to Mturk samples.
Plot mean subscale scores.
atts_m <- dq %>%
group_by(category) %>%
multi_boot_standard(col = "rating", na.rm = TRUE) %>%
arrange(category, desc(mean))
ggplot(atts_m, aes(x = category, y = mean)) +
geom_bar(stat="identity") +
geom_linerange(aes(ymin = ci_lower, ymax = ci_upper),
position = position_dodge(width = .9))+
ylim(c(0,6))
wide.paq <- dq %>%
select(sid, short_sent, rating) %>%
spread(short_sent, rating)
alpha.rr <- as.matrix(select(wide.paq, -sid))
psych::alpha(x = alpha.rr)
## Some items ( calm children when upset learn by playing too much attention does not spoil ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = alpha.rr)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd
## 0.68 0.68 0.72 0.082 2.1 0.018 5 0.41
##
## lower alpha upper 95% confidence boundaries
## 0.65 0.68 0.72
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc)
## calm children when upset 0.69 0.68 0.72
## close bonds for relationships 0.67 0.67 0.71
## comfort children 0.68 0.67 0.71
## consequences break rules 0.67 0.67 0.71
## do as told 0.66 0.67 0.71
## explain rules 0.68 0.68 0.72
## explore and experiment 0.68 0.68 0.72
## grateful to parents 0.67 0.67 0.71
## help deal with emotions 0.67 0.66 0.71
## learn about math before school 0.66 0.66 0.70
## learn before speaking 0.68 0.68 0.72
## learn by playing 0.68 0.68 0.72
## need to feel emotionally close 0.68 0.67 0.71
## not ok to boss around caregivers 0.67 0.67 0.71
## not ok to see adults as equals 0.66 0.66 0.70
## pay attention to likes 0.67 0.67 0.71
## read to kids 0.68 0.68 0.72
## respect adults 0.64 0.65 0.70
## should not make decisions 0.68 0.68 0.72
## talk to babies 0.67 0.67 0.71
## teach kids to prepare for school 0.66 0.66 0.70
## too much affection does not make weak 0.68 0.67 0.71
## too much attention does not spoil 0.69 0.68 0.72
## worry about misbehavior 0.67 0.67 0.71
## average_r S/N alpha se
## calm children when upset 0.086 2.2 0.017
## close bonds for relationships 0.080 2.0 0.018
## comfort children 0.082 2.1 0.018
## consequences break rules 0.082 2.1 0.018
## do as told 0.081 2.0 0.019
## explain rules 0.084 2.1 0.018
## explore and experiment 0.085 2.1 0.018
## grateful to parents 0.082 2.0 0.018
## help deal with emotions 0.079 2.0 0.018
## learn about math before school 0.079 2.0 0.019
## learn before speaking 0.084 2.1 0.018
## learn by playing 0.085 2.1 0.018
## need to feel emotionally close 0.081 2.0 0.018
## not ok to boss around caregivers 0.081 2.0 0.018
## not ok to see adults as equals 0.079 2.0 0.019
## pay attention to likes 0.080 2.0 0.018
## read to kids 0.083 2.1 0.018
## respect adults 0.076 1.9 0.020
## should not make decisions 0.086 2.2 0.018
## talk to babies 0.080 2.0 0.018
## teach kids to prepare for school 0.079 2.0 0.019
## too much affection does not make weak 0.082 2.0 0.018
## too much attention does not spoil 0.085 2.1 0.017
## worry about misbehavior 0.081 2.0 0.018
##
## Item statistics
## n raw.r std.r r.cor r.drop mean
## calm children when upset 649 0.20 0.22 0.14 0.068 4.3
## close bonds for relationships 649 0.35 0.41 0.37 0.244 5.4
## comfort children 649 0.29 0.33 0.27 0.181 5.3
## consequences break rules 649 0.42 0.34 0.29 0.280 3.9
## do as told 649 0.48 0.38 0.36 0.354 3.5
## explain rules 649 0.23 0.27 0.19 0.127 5.4
## explore and experiment 649 0.16 0.25 0.17 0.097 5.8
## grateful to parents 649 0.44 0.35 0.30 0.292 3.5
## help deal with emotions 649 0.38 0.43 0.39 0.286 5.6
## learn about math before school 649 0.48 0.42 0.40 0.353 5.0
## learn before speaking 649 0.18 0.28 0.20 0.127 5.9
## learn by playing 649 0.17 0.24 0.16 0.089 5.8
## need to feel emotionally close 649 0.28 0.35 0.30 0.196 5.6
## not ok to boss around caregivers 649 0.38 0.36 0.31 0.279 5.2
## not ok to see adults as equals 649 0.51 0.43 0.42 0.377 4.0
## pay attention to likes 649 0.37 0.40 0.36 0.265 5.2
## read to kids 649 0.22 0.30 0.23 0.147 5.8
## respect adults 649 0.59 0.52 0.52 0.489 4.7
## should not make decisions 649 0.27 0.21 0.13 0.143 2.9
## talk to babies 649 0.32 0.41 0.37 0.274 5.9
## teach kids to prepare for school 649 0.50 0.42 0.41 0.361 4.7
## too much affection does not make weak 649 0.26 0.35 0.30 0.194 5.8
## too much attention does not spoil 649 0.20 0.25 0.19 0.056 4.8
## worry about misbehavior 649 0.41 0.37 0.32 0.304 4.9
## sd
## calm children when upset 1.31
## close bonds for relationships 1.08
## comfort children 1.17
## consequences break rules 1.51
## do as told 1.41
## explain rules 1.02
## explore and experiment 0.66
## grateful to parents 1.64
## help deal with emotions 0.98
## learn about math before school 1.46
## learn before speaking 0.54
## learn by playing 0.79
## need to feel emotionally close 0.87
## not ok to boss around caregivers 1.07
## not ok to see adults as equals 1.58
## pay attention to likes 1.17
## read to kids 0.74
## respect adults 1.41
## should not make decisions 1.31
## talk to babies 0.53
## teach kids to prepare for school 1.64
## too much affection does not make weak 0.67
## too much attention does not spoil 1.42
## worry about misbehavior 1.16
##
## Non missing response frequency for each item
## 0 1 2 3 4 5 6
## calm children when upset 0.01 0.02 0.04 0.20 0.26 0.26 0.21
## close bonds for relationships 0.01 0.01 0.00 0.06 0.08 0.16 0.69
## comfort children 0.01 0.01 0.01 0.07 0.08 0.23 0.59
## consequences break rules 0.02 0.05 0.08 0.28 0.18 0.21 0.18
## do as told 0.02 0.06 0.12 0.36 0.18 0.16 0.10
## explain rules 0.00 0.01 0.02 0.04 0.08 0.22 0.64
## explore and experiment 0.00 0.00 0.00 0.01 0.02 0.14 0.82
## grateful to parents 0.04 0.08 0.11 0.34 0.14 0.13 0.17
## help deal with emotions 0.01 0.01 0.00 0.02 0.05 0.16 0.75
## learn about math before school 0.02 0.02 0.02 0.10 0.13 0.15 0.56
## learn before speaking 0.00 0.00 0.00 0.01 0.00 0.05 0.93
## learn by playing 0.01 0.00 0.00 0.01 0.02 0.07 0.88
## need to feel emotionally close 0.01 0.00 0.00 0.02 0.04 0.17 0.76
## not ok to boss around caregivers 0.00 0.01 0.01 0.05 0.12 0.26 0.54
## not ok to see adults as equals 0.03 0.06 0.06 0.20 0.23 0.21 0.20
## pay attention to likes 0.01 0.01 0.00 0.08 0.10 0.23 0.56
## read to kids 0.01 0.00 0.00 0.00 0.01 0.05 0.93
## respect adults 0.01 0.02 0.04 0.14 0.16 0.22 0.42
## should not make decisions 0.05 0.09 0.13 0.47 0.15 0.08 0.03
## talk to babies 0.00 0.00 0.00 0.00 0.01 0.04 0.94
## teach kids to prepare for school 0.02 0.04 0.04 0.18 0.10 0.11 0.52
## too much affection does not make weak 0.01 0.00 0.00 0.01 0.03 0.10 0.86
## too much attention does not spoil 0.01 0.02 0.05 0.14 0.12 0.23 0.43
## worry about misbehavior 0.00 0.01 0.01 0.10 0.21 0.28 0.38
## miss
## calm children when upset 0
## close bonds for relationships 0
## comfort children 0
## consequences break rules 0
## do as told 0
## explain rules 0
## explore and experiment 0
## grateful to parents 0
## help deal with emotions 0
## learn about math before school 0
## learn before speaking 0
## learn by playing 0
## need to feel emotionally close 0
## not ok to boss around caregivers 0
## not ok to see adults as equals 0
## pay attention to likes 0
## read to kids 0
## respect adults 0
## should not make decisions 0
## talk to babies 0
## teach kids to prepare for school 0
## too much affection does not make weak 0
## too much attention does not spoil 0
## worry about misbehavior 0
wide.paq <- dq %>%
filter(category == "RR") %>%
select(sid, short_sent, rating) %>%
spread(short_sent, rating)
alpha.rr <- as.matrix(select(wide.paq, -sid))
psych::alpha(x = alpha.rr)
##
## Reliability analysis
## Call: psych::alpha(x = alpha.rr)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd
## 0.73 0.73 0.71 0.25 2.7 0.016 4.1 0.82
##
## lower alpha upper 95% confidence boundaries
## 0.7 0.73 0.76
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N
## consequences break rules 0.70 0.70 0.69 0.25 2.4
## do as told 0.68 0.68 0.66 0.23 2.1
## grateful to parents 0.71 0.71 0.69 0.26 2.4
## not ok to boss around caregivers 0.71 0.71 0.69 0.26 2.4
## not ok to see adults as equals 0.67 0.67 0.65 0.23 2.1
## respect adults 0.68 0.68 0.66 0.23 2.1
## should not make decisions 0.73 0.73 0.71 0.27 2.7
## worry about misbehavior 0.71 0.71 0.70 0.26 2.5
## alpha se
## consequences break rules 0.017
## do as told 0.019
## grateful to parents 0.017
## not ok to boss around caregivers 0.017
## not ok to see adults as equals 0.019
## respect adults 0.019
## should not make decisions 0.016
## worry about misbehavior 0.017
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## consequences break rules 649 0.58 0.57 0.47 0.40 3.9 1.5
## do as told 649 0.68 0.67 0.62 0.53 3.5 1.4
## grateful to parents 649 0.59 0.55 0.45 0.39 3.5 1.6
## not ok to boss around caregivers 649 0.50 0.54 0.43 0.36 5.2 1.1
## not ok to see adults as equals 649 0.70 0.68 0.64 0.54 4.0 1.6
## respect adults 649 0.68 0.67 0.62 0.53 4.7 1.4
## should not make decisions 649 0.46 0.47 0.33 0.28 2.9 1.3
## worry about misbehavior 649 0.49 0.53 0.41 0.34 4.9 1.2
##
## Non missing response frequency for each item
## 0 1 2 3 4 5 6 miss
## consequences break rules 0.02 0.05 0.08 0.28 0.18 0.21 0.18 0
## do as told 0.02 0.06 0.12 0.36 0.18 0.16 0.10 0
## grateful to parents 0.04 0.08 0.11 0.34 0.14 0.13 0.17 0
## not ok to boss around caregivers 0.00 0.01 0.01 0.05 0.12 0.26 0.54 0
## not ok to see adults as equals 0.03 0.06 0.06 0.20 0.23 0.21 0.20 0
## respect adults 0.01 0.02 0.04 0.14 0.16 0.22 0.42 0
## should not make decisions 0.05 0.09 0.13 0.47 0.15 0.08 0.03 0
## worry about misbehavior 0.00 0.01 0.01 0.10 0.21 0.28 0.38 0
wide.paq <- dq %>%
filter(category == "AA") %>%
select(sid, short_sent, rating) %>%
spread(short_sent, rating)
alpha.aa <- as.matrix(select(wide.paq, -sid))
psych::alpha(x = alpha.aa)
##
## Reliability analysis
## Call: psych::alpha(x = alpha.aa)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd
## 0.59 0.61 0.59 0.16 1.5 0.024 5.2 0.56
##
## lower alpha upper 95% confidence boundaries
## 0.54 0.59 0.64
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc)
## calm children when upset 0.59 0.60 0.58
## close bonds for relationships 0.53 0.55 0.52
## comfort children 0.54 0.57 0.54
## help deal with emotions 0.57 0.58 0.56
## need to feel emotionally close 0.56 0.58 0.56
## pay attention to likes 0.56 0.58 0.56
## too much affection does not make weak 0.56 0.57 0.54
## too much attention does not spoil 0.54 0.56 0.53
## average_r S/N alpha se
## calm children when upset 0.18 1.5 0.024
## close bonds for relationships 0.15 1.2 0.027
## comfort children 0.16 1.3 0.027
## help deal with emotions 0.17 1.4 0.025
## need to feel emotionally close 0.16 1.4 0.026
## pay attention to likes 0.16 1.4 0.026
## too much affection does not make weak 0.16 1.3 0.026
## too much attention does not spoil 0.15 1.3 0.027
##
## Item statistics
## n raw.r std.r r.cor r.drop mean
## calm children when upset 649 0.48 0.43 0.26 0.21 4.3
## close bonds for relationships 649 0.57 0.59 0.51 0.38 5.4
## comfort children 649 0.56 0.54 0.43 0.34 5.3
## help deal with emotions 649 0.45 0.48 0.35 0.26 5.6
## need to feel emotionally close 649 0.45 0.50 0.37 0.28 5.6
## pay attention to likes 649 0.51 0.50 0.37 0.28 5.2
## too much affection does not make weak 649 0.46 0.53 0.43 0.33 5.8
## too much attention does not spoil 649 0.60 0.55 0.46 0.34 4.8
## sd
## calm children when upset 1.31
## close bonds for relationships 1.08
## comfort children 1.17
## help deal with emotions 0.98
## need to feel emotionally close 0.87
## pay attention to likes 1.17
## too much affection does not make weak 0.67
## too much attention does not spoil 1.42
##
## Non missing response frequency for each item
## 0 1 2 3 4 5 6
## calm children when upset 0.01 0.02 0.04 0.20 0.26 0.26 0.21
## close bonds for relationships 0.01 0.01 0.00 0.06 0.08 0.16 0.69
## comfort children 0.01 0.01 0.01 0.07 0.08 0.23 0.59
## help deal with emotions 0.01 0.01 0.00 0.02 0.05 0.16 0.75
## need to feel emotionally close 0.01 0.00 0.00 0.02 0.04 0.17 0.76
## pay attention to likes 0.01 0.01 0.00 0.08 0.10 0.23 0.56
## too much affection does not make weak 0.01 0.00 0.00 0.01 0.03 0.10 0.86
## too much attention does not spoil 0.01 0.02 0.05 0.14 0.12 0.23 0.43
## miss
## calm children when upset 0
## close bonds for relationships 0
## comfort children 0
## help deal with emotions 0
## need to feel emotionally close 0
## pay attention to likes 0
## too much affection does not make weak 0
## too much attention does not spoil 0
wide.paq <- dq %>%
filter(category == "EL") %>%
select(sid, short_sent, rating) %>%
spread(short_sent, rating)
alpha.el <- as.matrix(select(wide.paq, -sid))
psych::alpha(x = alpha.el)
##
## Reliability analysis
## Call: psych::alpha(x = alpha.el)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd
## 0.43 0.44 0.45 0.088 0.77 0.03 5.5 0.45
##
## lower alpha upper 95% confidence boundaries
## 0.37 0.43 0.49
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r
## explain rules 0.44 0.43 0.44 0.097
## explore and experiment 0.42 0.42 0.44 0.095
## learn about math before school 0.26 0.37 0.35 0.078
## learn before speaking 0.42 0.42 0.43 0.092
## learn by playing 0.43 0.42 0.44 0.095
## read to kids 0.42 0.40 0.42 0.087
## talk to babies 0.40 0.37 0.39 0.078
## teach kids to prepare for school 0.32 0.39 0.36 0.083
## S/N alpha se
## explain rules 0.75 0.028
## explore and experiment 0.74 0.030
## learn about math before school 0.59 0.043
## learn before speaking 0.71 0.031
## learn by playing 0.74 0.029
## read to kids 0.67 0.030
## talk to babies 0.59 0.032
## teach kids to prepare for school 0.63 0.040
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## explain rules 649 0.37 0.40 0.19 0.097 5.4 1.02
## explore and experiment 649 0.29 0.41 0.21 0.115 5.8 0.66
## learn about math before school 649 0.71 0.51 0.47 0.391 5.0 1.46
## learn before speaking 649 0.27 0.43 0.24 0.124 5.9 0.54
## learn by playing 649 0.31 0.41 0.21 0.090 5.8 0.79
## read to kids 649 0.34 0.46 0.29 0.137 5.8 0.74
## talk to babies 649 0.38 0.51 0.38 0.243 5.9 0.53
## teach kids to prepare for school 649 0.70 0.48 0.42 0.324 4.7 1.64
##
## Non missing response frequency for each item
## 0 1 2 3 4 5 6 miss
## explain rules 0.00 0.01 0.02 0.04 0.08 0.22 0.64 0
## explore and experiment 0.00 0.00 0.00 0.01 0.02 0.14 0.82 0
## learn about math before school 0.02 0.02 0.02 0.10 0.13 0.15 0.56 0
## learn before speaking 0.00 0.00 0.00 0.01 0.00 0.05 0.93 0
## learn by playing 0.01 0.00 0.00 0.01 0.02 0.07 0.88 0
## read to kids 0.01 0.00 0.00 0.00 0.01 0.05 0.93 0
## talk to babies 0.00 0.00 0.00 0.00 0.01 0.04 0.94 0
## teach kids to prepare for school 0.02 0.04 0.04 0.18 0.10 0.11 0.52 0
Create a data frame that has subscale scores.
ss <- dq %>%
dplyr::group_by(sid, category) %>%
dplyr::summarise(rating = mean(rating))
ss <- left_join(ss, subinfo)
| Estimate | Std. Error | df | t value | Pr(>|t|) | |
|---|---|---|---|---|---|
| (Intercept) | 5.5345745 | 0.0646563 | 1860.519 | 85.5999300 | 0.0000000 |
| categoryAA | -0.6037234 | 0.0851573 | 1284.000 | -7.0895113 | 0.0000000 |
| categoryRR | -1.5372340 | 0.0851573 | 1284.000 | -18.0517071 | 0.0000000 |
| parent_genderFemale | -0.0023017 | 0.0699636 | 1860.519 | -0.0328991 | 0.9737586 |
| categoryAA:parent_genderFemale | 0.3639507 | 0.0921474 | 1284.000 | 3.9496556 | 0.0000825 |
| categoryRR:parent_genderFemale | 0.1045068 | 0.0921474 | 1284.000 | 1.1341255 | 0.2569536 |
Women agree with AA items more than men.
| Estimate | Std. Error | df | t value | Pr(>|t|) | |
|---|---|---|---|---|---|
| (Intercept) | 5.3835873 | 0.1049627 | 1852.589 | 51.2904949 | 0.0000000 |
| categoryAA | -0.0151915 | 0.1378289 | 1282.001 | -0.1102203 | 0.9122519 |
| categoryRR | -1.3958927 | 0.1378289 | 1282.001 | -10.1277190 | 0.0000000 |
| parent_age_con | 0.0540150 | 0.0371932 | 1852.589 | 1.4522827 | 0.1465923 |
| categoryAA:parent_age_con | -0.1018048 | 0.0488392 | 1282.001 | -2.0844895 | 0.0373132 |
| categoryRR:parent_age_con | -0.0180465 | 0.0488392 | 1282.001 | -0.3695088 | 0.7118095 |
There is a small effect of age such that older parents agree less with AA items.
Unfortunately there is not much variability in Parent Education- most respondants have at least a college education.
| Estimate | Std. Error | df | t value | Pr(>|t|) | |
|---|---|---|---|---|---|
| (Intercept) | 5.3136062 | 0.1184128 | 1868.974 | 44.8735625 | 0.0000000 |
| categoryAA | -0.1987463 | 0.1559363 | 1290.000 | -1.2745356 | 0.2027032 |
| categoryRR | -1.1004794 | 0.1559363 | 1290.000 | -7.0572387 | 0.0000000 |
| parent_ed_con | 0.0475915 | 0.0252262 | 1868.974 | 1.8865894 | 0.0593705 |
| categoryAA:parent_ed_con | -0.0209718 | 0.0332201 | 1290.000 | -0.6312982 | 0.5279574 |
| categoryRR:parent_ed_con | -0.0757542 | 0.0332201 | 1290.000 | -2.2803741 | 0.0227481 |
There is a small effect of parent education such that parents with higher levels of education agree more with EL items.
| Estimate | Std. Error | df | t value | Pr(>|t|) | |
|---|---|---|---|---|---|
| (Intercept) | 5.7387053 | 0.1473167 | 1869.188 | 38.9548875 | 0.0000000 |
| categoryAA | -0.2741340 | 0.1933614 | 1294.000 | -1.4177284 | 0.1565108 |
| categoryRR | -2.1719168 | 0.1933614 | 1294.000 | -11.2324199 | 0.0000000 |
| num_kids | -0.0432387 | 0.0303777 | 1869.188 | -1.4233724 | 0.1547951 |
| categoryAA:num_kids | -0.0042578 | 0.0398724 | 1294.000 | -0.1067863 | 0.9149750 |
| categoryRR:num_kids | 0.1519333 | 0.0398724 | 1294.000 | 3.8104890 | 0.0001452 |
With more kids, parents agree more with RR itmes and less with AA and EL items.
| Estimate | Std. Error | df | t value | Pr(>|t|) | |
|---|---|---|---|---|---|
| (Intercept) | 5.4514925 | 0.0435993 | 1649.77 | 125.0361341 | 0.0000000 |
| categoryAA | -0.3401741 | 0.0583389 | 1124.00 | -5.8310026 | 0.0000000 |
| categoryRR | -1.3370647 | 0.0583389 | 1124.00 | -22.9189317 | 0.0000000 |
| ethnicityHispanic or Latino | 0.0680387 | 0.1176475 | 1649.77 | 0.5783267 | 0.5631225 |
| ethnicityWhite | 0.1290798 | 0.0552426 | 1649.77 | 2.3365962 | 0.0195793 |
| categoryAA:ethnicityHispanic or Latino | 0.2347054 | 0.1574204 | 1124.00 | 1.4909464 | 0.1362561 |
| categoryRR:ethnicityHispanic or Latino | 0.2433147 | 0.1574204 | 1124.00 | 1.5456362 | 0.1224739 |
| categoryAA:ethnicityWhite | 0.0562886 | 0.0739184 | 1124.00 | 0.7614962 | 0.4465205 |
| categoryRR:ethnicityWhite | -0.2175287 | 0.0739184 | 1124.00 | -2.9428217 | 0.0033191 |