In 2004, the state of North Carolina released a large data set containing information on births recorded in this state. This data set is useful to researchers studying the relation between habits and practices of expectant mothers and the birth of their children. We will work with a random sample of observations from this data set.
Load the nc
data set into our workspace.
load("more/nc.RData")
head(nc)
## fage mage mature weeks premie visits marital gained weight
## 1 NA 13 younger mom 39 full term 10 married 38 7.63
## 2 NA 14 younger mom 42 full term 15 married 20 7.88
## 3 19 15 younger mom 37 full term 11 married 38 6.63
## 4 21 15 younger mom 41 full term 6 married 34 8.00
## 5 NA 15 younger mom 39 full term 9 married 27 6.38
## 6 NA 15 younger mom 38 full term 19 married 22 5.38
## lowbirthweight gender habit whitemom
## 1 not low male nonsmoker not white
## 2 not low male nonsmoker not white
## 3 not low female nonsmoker white
## 4 not low male nonsmoker white
## 5 not low female nonsmoker not white
## 6 low male nonsmoker not white
We have observations on 13 different variables, some categorical and some numerical. The meaning of each variable is as follows.
variable | description |
---|---|
fage |
father’s age in years. |
mage |
mother’s age in years. |
mature |
maturity status of mother. |
weeks |
length of pregnancy in weeks. |
premie |
whether the birth was classified as premature (premie) or full-term. |
visits |
number of hospital visits during pregnancy. |
marital |
whether mother is married or not married at birth. |
gained |
weight gained by mother during pregnancy in pounds. |
weight |
weight of the baby at birth in pounds. |
lowbirthweight |
whether baby was classified as low birthweight (low ) or not (not low ). |
gender |
gender of the baby, female or male . |
habit |
status of the mother as a nonsmoker or a smoker . |
whitemom |
whether mom is white or not white . |
jmb answer: each row or case of the data represents a baby born and mother pair. There are 1,000 cases in this data set.
As a first step in the analysis, we should consider summaries of the data. This can be done using the summary
command:
library(ggplot2)
summary(nc)
## fage mage mature weeks
## Min. :14.00 Min. :13 mature mom :133 Min. :20.00
## 1st Qu.:25.00 1st Qu.:22 younger mom:867 1st Qu.:37.00
## Median :30.00 Median :27 Median :39.00
## Mean :30.26 Mean :27 Mean :38.33
## 3rd Qu.:35.00 3rd Qu.:32 3rd Qu.:40.00
## Max. :55.00 Max. :50 Max. :45.00
## NA's :171 NA's :2
## premie visits marital gained
## full term:846 Min. : 0.0 married :386 Min. : 0.00
## premie :152 1st Qu.:10.0 not married:613 1st Qu.:20.00
## NA's : 2 Median :12.0 NA's : 1 Median :30.00
## Mean :12.1 Mean :30.33
## 3rd Qu.:15.0 3rd Qu.:38.00
## Max. :30.0 Max. :85.00
## NA's :9 NA's :27
## weight lowbirthweight gender habit
## Min. : 1.000 low :111 female:503 nonsmoker:873
## 1st Qu.: 6.380 not low:889 male :497 smoker :126
## Median : 7.310 NA's : 1
## Mean : 7.101
## 3rd Qu.: 8.060
## Max. :11.750
##
## whitemom
## not white:284
## white :714
## NA's : 2
##
##
##
##
As you review the variable summaries, consider which variables are categorical and which are numerical. For numerical variables, are there outliers? If you aren’t sure or want to take a closer look at the data, make a graph.
Consider the possible relationship between a mother’s smoking habit and the weight of her baby. Plotting the data is a useful first step because it helps us quickly visualize trends, identify strong associations, and develop research questions.
habit
and weight
. What does the plot highlight about the relationship between these two variables?jmb answer: It appears that mothers who smoke have babies with lower birth weight.
boxplot(nc$weight~nc$habit)
The box plots show how the medians of the two distributions compare, but we can also compare the means of the distributions using the following function to split the weight
variable into the habit
groups, then take the mean of each using the mean
function.
by(nc$weight, nc$habit, mean)
## nc$habit: nonsmoker
## [1] 7.144273
## --------------------------------------------------------
## nc$habit: smoker
## [1] 6.82873
There is an observed difference, but is this difference statistically significant? In order to answer this question we will conduct a hypothesis test.
by
command above but replacing mean
with length
.jmb answer: Independence: The sample is random and each and the sample size is at least 30 and the sample makes up less than 10% of all baby-mother pairs. No information is provided about the skew.
by(nc$weight, nc$habit, length)
## nc$habit: nonsmoker
## [1] 873
## --------------------------------------------------------
## nc$habit: smoker
## [1] 126
jmb answer:
\(H_{0}: \mu_{diff} = 0\) i.e. there is no difference in means
\(H_{A}: \mu_{diff} \neq 0\) i.e. there is a difference in the means
Next, we introduce a new function, inference
, that we will use for conducting hypothesis tests and constructing confidence intervals.
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Warning: package 'BHH2' was built under R version 3.3.3
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## H0: mu_nonsmoker - mu_smoker = 0
## HA: mu_nonsmoker - mu_smoker != 0
## Standard error = 0.134
## Test statistic: Z = 2.359
## p-value = 0.0184
Let’s pause for a moment to go through the arguments of this custom function. The first argument is y
, which is the response variable that we are interested in: nc$weight
. The second argument is the explanatory variable, x
, which is the variable that splits the data into two groups, smokers and non-smokers: nc$habit
. The third argument, est
, is the parameter we’re interested in: "mean"
(other options are "median"
, or "proportion"
.) Next we decide on the type
of inference we want: a hypothesis test ("ht"
) or a confidence interval ("ci"
). When performing a hypothesis test, we also need to supply the null
value, which in this case is 0
, since the null hypothesis sets the two population means equal to each other. The alternative
hypothesis can be "less"
, "greater"
, or "twosided"
. Lastly, the method
of inference can be "theoretical"
or "simulation"
based.
type
argument to "ci"
to construct and record a confidence interval for the difference between the weights of babies born to smoking and non-smoking mothers.jmb answer:
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( 0.0534 , 0.5777 )
# 95 % Confidence interval = ( 0.0534 , 0.5777 )
By default the function reports an interval for (\(\mu_{nonsmoker} - \mu_{smoker}\)) . We can easily change this order by using the order
argument:
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical",
order = c("smoker","nonsmoker"))
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## Observed difference between means (smoker-nonsmoker) = -0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( -0.5777 , -0.0534 )
weeks
) and interpret it in context. Note that since you’re doing inference on a single population parameter, there is no explanatory variable, so you can omit the x
variable from the function.jmb answer using the inference
function, I’ve calculated the mean weeks of pregnancy to 38.3 weeks. The 95% confidence interval is: ( 38.1528 , 38.5165 )
inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")
## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 95 % Confidence interval = ( 38.1528 , 38.5165 )
conflevel = 0.90
.inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical", conflevel = 0.90)
## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 90 % Confidence interval = ( 38.182 , 38.4873 )
\(H_{0}: \mu_{diff} = 0\) i.e. there is no difference in weight gains
\(H_{A}: \mu_{diff} \neq 0\) i.e. there is a difference in the avg weight gains
Given the below, I’ve failed to reject \(H_{0}\).
inference(y = nc$gained, x = nc$mature, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_mature mom = 129, mean_mature mom = 28.7907, sd_mature mom = 13.4824
## n_younger mom = 844, mean_younger mom = 30.5604, sd_younger mom = 14.3469
## Observed difference between means (mature mom-younger mom) = -1.7697
##
## H0: mu_mature mom - mu_younger mom = 0
## HA: mu_mature mom - mu_younger mom != 0
## Standard error = 1.286
## Test statistic: Z = -1.376
## p-value = 0.1686
jmb answer using the by
function, I’ll select mage
and mature
to get the max
in each group which tells me the max age for mature
, younger mom
s is 34.
#qplot(x = mage, y = weight, data = nc, geom = "point", color = mature)
by(nc$mage, nc$mature, max)
## nc$mature: mature mom
## [1] 50
## --------------------------------------------------------
## nc$mature: younger mom
## [1] 34
inference
function, report the statistical results, and also provide an explanation in plain language.jmb answer:
Average weight gained between smokers and non smokers is equal:
\(H_{0}: \mu_{diff} = 0\) i.e. there is no difference.
\(H_{A}: \mu_{diff} \neq 0\) i.e. there is a difference
\(p>\alpha\): fail to reject the null hypothesis.
inference(y = nc$gained, x = nc$habit, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 851, mean_nonsmoker = 30.0964, sd_nonsmoker = 14.0226
## n_smoker = 122, mean_smoker = 31.9262, sd_smoker = 15.6512
## Observed difference between means (nonsmoker-smoker) = -1.8299
##
## H0: mu_nonsmoker - mu_smoker = 0
## HA: mu_nonsmoker - mu_smoker != 0
## Standard error = 1.496
## Test statistic: Z = -1.223
## p-value = 0.2214
This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was adapted for OpenIntro by Mine Çetinkaya-Rundel from a lab written by the faculty and TAs of UCLA Statistics.