Looking at a data set (mtcars) of a collection of cars and exploring the relationship between a set of variables and miles per gallon (MPG) (outcome). This document is particularly interested in the following two questions: 1.Is an automatic or manual transmission better for MPG? 2.Quantify the MPG difference between automatic and manual transmissions?
data(mtcars)
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
From the view, we can see that “am” represents whether a car is auto or manual (“0” for auto and “1” for manual), and our target variable is “mpg”.
x<-mtcars$am
y<-mtcars$mpg
boxplot(y~x) #Take a view of the data
means<- c(mean(mtcars$mpg[mtcars$am==0]), mean(mtcars$mpg[mtcars$am==1]))
names(means)<-c("Auto","Manual")
print(means) #Looking at means of mpg for each type
## Auto Manual
## 17.14737 24.39231
t.test(mtcars$mpg[mtcars$am==0],mtcars$mpg[mtcars$am==1])#Mean test
##
## Welch Two Sample t-test
##
## data: mtcars$mpg[mtcars$am == 0] and mtcars$mpg[mtcars$am == 1]
## t = -3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.280194 -3.209684
## sample estimates:
## mean of x mean of y
## 17.14737 24.39231
From the result we can find out the mean for each type, and the p-value of 0.001374 is less than 5%, thus the null hypothesis that they are equal is rejected.
fit0<-lm(y~x)
summary(fit0)$adj.r.squared
## [1] 0.3384589
summary(fit0)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.147368 1.124603 15.247492 1.133983e-15
## x 7.244939 1.764422 4.106127 2.850207e-04
#When considering only "am" as independent variables, mpg for auto is 17.15 and changing from auto to manual would increase the value by 7.24.
Not satisfactory.
First, take a look at correlation within independent variables
cor<-cor(mtcars) #matrix in Appendix
fit1<-step(lm(mpg~.,data=mtcars), trace=0)
coef<-summary(fit1)$coef[,1]
coef
## (Intercept) wt qsec am
## 9.617781 -3.916504 1.225886 2.935837
By applying step linear regression, 3 variables were picked up to describe the “mpg”, which are “wt”,“qsec” and “am”, with an adjusted R-squared of 83.36%.
“Mpg” will be decreased by 3.92 for each one increasing “wt”; increased by 1.23 for 1 increasing “qsec”; and increased by 2.94 fro 1 increasing in “am” (change from auto to munual), holding others constant respectively. To answer the 2 questions at beginning: 1.An automatic it better than manual transmission because of lower MPG. 2.Quantify the MPG difference between automatic and manual transmissions: With considering “wt”,“qsec” and “am” mpg= 9.62-3.92wt+1.23qsec+2.94
cor(mtcars) #matrix in Appendix
## mpg cyl disp hp drat wt
## mpg 1.0000000 -0.8521620 -0.8475514 -0.7761684 0.68117191 -0.8676594
## cyl -0.8521620 1.0000000 0.9020329 0.8324475 -0.69993811 0.7824958
## disp -0.8475514 0.9020329 1.0000000 0.7909486 -0.71021393 0.8879799
## hp -0.7761684 0.8324475 0.7909486 1.0000000 -0.44875912 0.6587479
## drat 0.6811719 -0.6999381 -0.7102139 -0.4487591 1.00000000 -0.7124406
## wt -0.8676594 0.7824958 0.8879799 0.6587479 -0.71244065 1.0000000
## qsec 0.4186840 -0.5912421 -0.4336979 -0.7082234 0.09120476 -0.1747159
## vs 0.6640389 -0.8108118 -0.7104159 -0.7230967 0.44027846 -0.5549157
## am 0.5998324 -0.5226070 -0.5912270 -0.2432043 0.71271113 -0.6924953
## gear 0.4802848 -0.4926866 -0.5555692 -0.1257043 0.69961013 -0.5832870
## carb -0.5509251 0.5269883 0.3949769 0.7498125 -0.09078980 0.4276059
## qsec vs am gear carb
## mpg 0.41868403 0.6640389 0.59983243 0.4802848 -0.55092507
## cyl -0.59124207 -0.8108118 -0.52260705 -0.4926866 0.52698829
## disp -0.43369788 -0.7104159 -0.59122704 -0.5555692 0.39497686
## hp -0.70822339 -0.7230967 -0.24320426 -0.1257043 0.74981247
## drat 0.09120476 0.4402785 0.71271113 0.6996101 -0.09078980
## wt -0.17471588 -0.5549157 -0.69249526 -0.5832870 0.42760594
## qsec 1.00000000 0.7445354 -0.22986086 -0.2126822 -0.65624923
## vs 0.74453544 1.0000000 0.16834512 0.2060233 -0.56960714
## am -0.22986086 0.1683451 1.00000000 0.7940588 0.05753435
## gear -0.21268223 0.2060233 0.79405876 1.0000000 0.27407284
## carb -0.65624923 -0.5696071 0.05753435 0.2740728 1.00000000
anova(fit0,fit1)
## Warning in anova.lmlist(object, ...): models with response '"mpg"' removed
## because response differs from model 1
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 405.15 405.15 16.86 0.000285 ***
## Residuals 30 720.90 24.03
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
par(mfrow=c(2,2))
plot(fit0)
plot(fit1)