(Shades: between subject errors)
dat <- tg %>%
filter(Trial==1 & (cond=="Generous"|cond=="Intermediate")) %>%
droplevels()
t.test(invest ~ cond, paired=TRUE, dat)
##
## Paired t-test
##
## data: invest by cond
## t = -0.29, df = 35, p-value = 0.8
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -449.5 338.4
## sample estimates:
## mean of the differences
## -55.56
dat <- tg %>%
filter(Trial==1 & (cond=="Generous"|cond=="Selfish")) %>%
droplevels()
t.test(invest ~ cond, paired=TRUE, dat)
##
## Paired t-test
##
## data: invest by cond
## t = 0.15, df = 35, p-value = 0.9
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -448.1 522.2
## sample estimates:
## mean of the differences
## 37.04
dat <- tg %>%
filter(Trial==2 & (cond=="Generous"|cond=="Intermediate")) %>%
droplevels()
t.test(invest ~ cond, paired=TRUE, dat)
##
## Paired t-test
##
## data: invest by cond
## t = 1, df = 35, p-value = 0.3
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -286.1 841.7
## sample estimates:
## mean of the differences
## 277.8
dat <- tg %>%
filter(Trial==2 & (cond=="Generous"|cond=="Selfish")) %>%
droplevels()
t.test(invest ~ cond, paired=TRUE, dat)
##
## Paired t-test
##
## data: invest by cond
## t = 4.6, df = 35, p-value = 0.00005
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 823.1 2102.8
## sample estimates:
## mean of the differences
## 1463
cohensD(invest ~ cond, method="paired", dat)
## [1] 0.7736
dat <- tg %>%
filter(Trial==2 & (cond=="Intermediate"|cond=="Selfish")) %>%
droplevels()
t.test(invest ~ cond, paired=TRUE, dat)
##
## Paired t-test
##
## data: invest by cond
## t = 3.8, df = 35, p-value = 0.0005
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 556.1 1814.3
## sample estimates:
## mean of the differences
## 1185
cohensD(invest ~ cond, method="paired", dat)
## [1] 0.6375
dat <- tg %>%
filter(Trial==3 & (cond=="Generous"|cond=="Intermediate")) %>%
droplevels()
t.test(invest ~ cond, paired=TRUE, dat)
##
## Paired t-test
##
## data: invest by cond
## t = 2.8, df = 35, p-value = 0.008
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 198.4 1246.0
## sample estimates:
## mean of the differences
## 722.2
cohensD(invest ~ cond, method="paired", dat)
## [1] 0.4665
(Error bars: within subjects errors)
## $ANOVA
## Effect DFn DFd SSn SSd F
## 1 (Intercept) 1 35 776279.95 18219.5 1491.245
## 2 phase 1 35 37.51 894.4 1.468
## 3 cond 3 105 121.41 1719.3 2.471
## 4 phase:cond 3 105 48.99 1062.6 1.614
## p p<.05 ges
## 1 0.00000000000000000000000000000275 * 0.972568
## 2 0.23376904956924760004000063418061 0.001710
## 3 0.06584195244533741497861001334968 0.005514
## 4 0.19065514840963126985684539249633 0.002232
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 3 cond 0.6784 0.02267 *
## 4 phase:cond 0.8226 0.25343
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 3 cond 0.8205 0.07876 0.8873 0.07368
## 4 phase:cond 0.8946 0.19590 0.9760 0.19185
Predominance
Condition: F(2.4616, 86.157) = 2.4715, p = 0.0788, \(\eta^2\) = 0.0055
Learning: F(1, 35) = 1.4681, p = 0.2338, \(\eta^2\) = 0.0017
Learning:Condition: F(3, 105) = 1.6136, p = 0.1907, \(\eta^2\) = 0.0022
tpred <- paired.t(pred.tidy)
tpred$t$postgi
##
## Paired t-test
##
## data: dep by cond
## t = 2.2, df = 35, p-value = 0.03
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1585 3.7031
## sample estimates:
## mean of the differences
## 1.931
tpred$d$postgi
## [1] 0.3686
tpred$t$postgs
##
## Paired t-test
##
## data: dep by cond
## t = 2.8, df = 35, p-value = 0.007
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.6396 3.8079
## sample estimates:
## mean of the differences
## 2.224
tpred$d$postgs
## [1] 0.475
tpred$t$postgn
##
## Paired t-test
##
## data: dep by cond
## t = 3, df = 35, p-value = 0.005
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.6698 3.4986
## sample estimates:
## mean of the differences
## 2.084
tpred$d$postgn
## [1] 0.4986
tpred$pval
## $pre
## [1] 0.88746 0.78982 0.11768 0.87477 0.15847 0.08749
##
## $post
## [1] 0.033612 0.007283 0.005061 0.715779 0.883380 0.851424
##
## $pp
## [1] 0.08684 0.99642 0.86133 0.12776
tpred$fdr$pre$p.value
## Generous Intermediate Selfish
## Intermediate 0.8875 NA NA
## Selfish 0.8875 0.8875 NA
## New 0.3169 0.3169 0.3169
tpred$fdr$post$p.value
## Generous Intermediate Selfish
## Intermediate 0.06722 NA NA
## Selfish 0.02185 0.8834 NA
## New 0.02185 0.8834 0.8834
tpred$fdr$pp
## [1] 0.2555 0.9964 0.9964 0.2555
aov_dom <- ezANOVA(data=dom.tidy, dv=faceDom, wid=sbj, within=.(phase,cond), detailed=TRUE)
aov_dom
## $ANOVA
## Effect DFn DFd SSn SSd F
## 1 (Intercept) 1 35 290.489072679 0.005055 2011134.78269
## 2 phase 1 35 0.000003005 0.003029 0.03473
## 3 cond 3 105 0.024547981 1.459541 0.58866
## 4 phase:cond 3 105 0.015645949 1.064109 0.51462
## p
## 1 0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000006881
## 2 0.8532377914002912122626298696559388190507888793945312500000000000000000000000000000000000
## 3 0.6237655418184229194622503200662322342395782470703125000000000000000000000000000000000000
## 4 0.6730993644635286932143003468809183686971664428710937500000000000000000000000000000000000
## p<.05 ges
## 1 * 0.991359882
## 2 0.000001187
## 3 0.009603000
## 4 0.006141976
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 3 cond 0.9375 0.82434
## 4 phase:cond 0.7306 0.06042
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 3 cond 0.9580 0.6167 1.0528 0.6238
## 4 phase:cond 0.8209 0.6374 0.8878 0.6516
tdom <- paired.t(dom.tidy)
tdom$pval
## $pre
## [1] 0.5003 0.9903 0.3708 0.5377 0.1599 0.2814
##
## $post
## [1] 0.6707 0.6479 0.9227 0.3642 0.7761 0.5934
##
## $pp
## [1] 0.9031 0.6745 0.5056 0.2700
tdom$fdr$pre$p.value
## Generous Intermediate Selfish
## Intermediate 0.6453 NA NA
## Selfish 0.9903 0.6453 NA
## New 0.6453 0.6453 0.6453
tdom$fdr$post$p.value
## Generous Intermediate Selfish
## Intermediate 0.9227 NA NA
## Selfish 0.9227 0.9227 NA
## New 0.9227 0.9227 0.9227
tdom$fdr$pp
## [1] 0.9031 0.8993 0.8993 0.8993
## $ANOVA
## Effect DFn DFd SSn SSd F
## 1 (Intercept) 1 35 289.974226255 0.003674 2762427.63001
## 2 phase 1 35 0.000003183 0.003614 0.03083
## 3 cond 3 105 0.153215977 1.047019 5.12174
## 4 phase:cond 3 105 0.026860772 1.059164 0.88761
## p
## 1 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000002663
## 2 0.861641483628234339242624173493823036551475524902343750000000000000000000000000000000000000
## 3 0.002400256835285908933730336656253712135367095470428466796875000000000000000000000000000000
## 4 0.450160314604930111848091200954513624310493469238281250000000000000000000000000000000000000
## p<.05 ges
## 1 * 0.992764258
## 2 0.000001506
## 3 * 0.067594668
## 4 0.012549815
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 3 cond 0.9552 0.9076
## 4 phase:cond 0.9054 0.6461
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 3 cond 0.9698 0.002686 * 1.067 0.0024 *
## 4 phase:cond 0.9341 0.444593 1.024 0.4502
Face Suppression
Condition: F(3, 105) = 5.1217, p = 0.0024, \(\eta^2\) = 0.0676
Learning: F(1, 35) = 0.0308, p = 0.8616, \(\eta^2\) = 0
Learning:Condition: F(3, 105) = 0.8876, p = 0.4502, \(\eta^2\) = 0.0125
tsup <- paired.t(sup.tidy)
tsup$t$postgi
##
## Paired t-test
##
## data: dep by cond
## t = -3, df = 35, p-value = 0.005
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.11337 -0.02144
## sample estimates:
## mean of the differences
## -0.06741
tsup$d$postgi
## [1] 0.4961
tsup$t$postgs
##
## Paired t-test
##
## data: dep by cond
## t = -2.5, df = 35, p-value = 0.02
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.11424 -0.01275
## sample estimates:
## mean of the differences
## -0.0635
tsup$d$postgs
## [1] 0.4234
tsup$t$postgn
##
## Paired t-test
##
## data: dep by cond
## t = -3.3, df = 35, p-value = 0.002
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.13078 -0.03127
## sample estimates:
## mean of the differences
## -0.08102
tsup$d$postgn
## [1] 0.551
tsup$pval
## $pre
## [1] 0.25003 0.58225 0.08006 0.64994 0.39942 0.18945
##
## $post
## [1] 0.005255 0.015665 0.002195 0.875344 0.570810 0.379323
##
## $pp
## [1] 0.1252 0.6052 0.3755 0.8509
tsup$fdr$pre$p.value
## Generous Intermediate Selfish
## Intermediate 0.5001 NA NA
## Selfish 0.6499 0.6499 NA
## New 0.4804 0.5991 0.5001
tsup$fdr$post$p.value
## Generous Intermediate Selfish
## Intermediate 0.01577 NA NA
## Selfish 0.03133 0.8753 NA
## New 0.01317 0.6850 0.569
tsup$fdr$pp
## [1] 0.5007 0.8070 0.7510 0.8509
freq <- prepData(freq_face, parList, skip=1)
tfreq <- paired.t(freq)
first <- prepData(first_face, parList, skip=1)
tfirst <- paired.t(first)
tfirst$t$postgs
##
## Paired t-test
##
## data: dep by cond
## t = 2.3, df = 35, p-value = 0.03
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.06089 1.16133
## sample estimates:
## mean of the differences
## 0.6111
tfirst$d$postgs
## [1] 0.3758
tfirst$t$pregs
##
## Paired t-test
##
## data: dep by cond
## t = -0.086, df = 35, p-value = 0.9
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.6823 0.6267
## sample estimates:
## mean of the differences
## -0.02778
tfirst$d$pregs
## [1] 0.01436
tfirst$pval
## $pre
## [1] 0.7182 0.9318 0.8032 0.7347 0.9413 0.6891
##
## $post
## [1] 0.22742 0.03051 0.17316 0.59410 0.83991 0.48026
##
## $pp
## [1] 0.1985 0.8020 0.5216 0.7046
tfirst$fdr$post$p.value
## Generous Intermediate Selfish
## Intermediate 0.4548 NA NA
## Selfish 0.1830 0.7129 NA
## New 0.4548 0.8399 0.7129
ks.test(allDom_pre$s_gen[[1]], allDom$s_gen[[1]])
##
## Two-sample Kolmogorov-Smirnov test
##
## data: allDom_pre$s_gen[[1]] and allDom$s_gen[[1]]
## D = 0.058, p-value = 0.002
## alternative hypothesis: two-sided
ks.test(allDom_pre$s_int[[1]], allDom$s_int[[1]])
##
## Two-sample Kolmogorov-Smirnov test
##
## data: allDom_pre$s_int[[1]] and allDom$s_int[[1]]
## D = 0.021, p-value = 0.7
## alternative hypothesis: two-sided
ks.test(allDom_pre$s_self[[1]], allDom$s_self[[1]])
##
## Two-sample Kolmogorov-Smirnov test
##
## data: allDom_pre$s_self[[1]] and allDom$s_self[[1]]
## D = 0.022, p-value = 0.7
## alternative hypothesis: two-sided
ks.test(allDom_pre$s_new[[1]], allDom$s_new[[1]])
##
## Two-sample Kolmogorov-Smirnov test
##
## data: allDom_pre$s_new[[1]] and allDom$s_new[[1]]
## D = 0.026, p-value = 0.5
## alternative hypothesis: two-sided
ks.test(allDom$s_gen[[1]],allDom$s_int[[1]])
##
## Two-sample Kolmogorov-Smirnov test
##
## data: allDom$s_gen[[1]] and allDom$s_int[[1]]
## D = 0.052, p-value = 0.006
## alternative hypothesis: two-sided
ks.test(allDom$s_gen[[1]],allDom$s_self[[1]])
##
## Two-sample Kolmogorov-Smirnov test
##
## data: allDom$s_gen[[1]] and allDom$s_self[[1]]
## D = 0.037, p-value = 0.1
## alternative hypothesis: two-sided
ks.test(allDom$s_gen[[1]],allDom$s_new[[1]])
##
## Two-sample Kolmogorov-Smirnov test
##
## data: allDom$s_gen[[1]] and allDom$s_new[[1]]
## D = 0.052, p-value = 0.007
## alternative hypothesis: two-sided
##
## Pearson's product-moment correlation
##
## data: indices$pre_pred and indices$LI
## t = -0.37, df = 34, p-value = 0.7
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3841 0.2706
## sample estimates:
## cor
## -0.0636
##
## Pearson's product-moment correlation
##
## data: indices$post_pred and indices$LI
## t = 2.4, df = 34, p-value = 0.02
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.06527 0.63380
## sample estimates:
## cor
## 0.3855
##
## Pearson's product-moment correlation
##
## data: indices$post_dom and indices$LI
## t = 1.9, df = 34, p-value = 0.07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.02433 0.57705
## sample estimates:
## cor
## 0.3067
##
## Pearson's product-moment correlation
##
## data: indices$post_sup and indices$LI
## t = -2, df = 34, p-value = 0.06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.588255 0.007378
## sample estimates:
## cor
## -0.3219
## [1] 0.9327
##
## Two Sample t-test
##
## data: li by group
## t = 7, df = 34, p-value = 0.00000002
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 0.3865 Inf
## sample estimates:
## mean in group Better mean in group Poorer
## 1.245 0.735
## [1] 2.329
One-tailed
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 17 390196.33 8772.9 756.117 0.000000000000001561 *
## 2 phase 1 17 66.72 339.8 3.338 0.085318587505402846
## 3 cond 3 51 98.80 630.1 2.666 0.057543188142706835
## 4 phase:cond 3 51 113.93 438.2 4.420 0.007734973080774151 *
## ges
## 1 0.974572
## 2 0.006510
## 3 0.009612
## 4 0.011066
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 3 cond 0.7825 0.5711
## 4 phase:cond 0.7037 0.3561
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 3 cond 0.8470 0.06844 1.0084 0.057543
## 4 phase:cond 0.8352 0.01224 * 0.9911 0.007927 *
Predominance: Better-learner
Condition: F(3, 51) = 2.6659, p = 0.0575, \(\eta^2\) = 0.0096
Learning: F(1, 17) = 3.3377, p = 0.0853, \(\eta^2\) = 0.0065
Learning:Condition: F(3, 51) = 4.4202, p = 0.0077, \(\eta^2\) = 0.0111
tpred_be <- paired.t(pred_better_t)
tpred_be$t$gen
##
## Paired t-test
##
## data: dep by phase
## t = -3.1, df = 17, p-value = 0.007
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -7.26 -1.35
## sample estimates:
## mean of the differences
## -4.305
tpred_be$d$gen
## [1] 0.7244
tpred_be$t$postgi
##
## Paired t-test
##
## data: dep by cond
## t = 2.3, df = 17, p-value = 0.03
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.2641 5.8953
## sample estimates:
## mean of the differences
## 3.08
tpred_be$d$postgi
## [1] 0.5439
tpred_be$t$postgs
##
## Paired t-test
##
## data: dep by cond
## t = 3.9, df = 17, p-value = 0.001
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.877 6.254
## sample estimates:
## mean of the differences
## 4.065
tpred_be$d$postgs
## [1] 0.9237
tpred_be$t$postgn
##
## Paired t-test
##
## data: dep by cond
## t = 4.2, df = 17, p-value = 0.0005
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.988 5.911
## sample estimates:
## mean of the differences
## 3.95
tpred_be$d$postgn
## [1] 1.001
tpred_be$pval
## $pre
## [1] 0.6065 0.5062 0.5926 0.8203 0.2282 0.1648
##
## $post
## [1] 0.0338616 0.0011058 0.0005418 0.3560390 0.5780487 0.9266408
##
## $pp
## [1] 0.006887 0.529767 0.604361 0.406847
tpred_be$fdr$pre$p.value
## Generous Intermediate Selfish
## Intermediate 0.7278 NA NA
## Selfish 0.7278 0.8203 NA
## New 0.7278 0.6847 0.6847
tpred_be$fdr$post$p.value
## Generous Intermediate Selfish
## Intermediate 0.067723 NA NA
## Selfish 0.003317 0.5341 NA
## New 0.003251 0.6937 0.9266
tpred_be$fdr$pp
## [1] 0.02755 0.60436 0.60436 0.60436
## $ANOVA
## Effect DFn DFd SSn SSd F
## 1 (Intercept) 1 17 145.1516830 0.002261 1091160.3481
## 2 phase 1 17 0.0001007 0.002316 0.7395
## 3 cond 3 51 0.0184041 0.654806 0.4778
## 4 phase:cond 3 51 0.0296923 0.403458 1.2511
## p p<.05 ges
## 1 0.000000000000000000000000000000000000000002612 * 0.99273095
## 2 0.401771547809225415548439741542097181081771851 0.00009477
## 3 0.699134381636512647339998238749103620648384094 0.01702124
## 4 0.301007185219620831961861995296203531324863434 0.02717749
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 3 cond 0.8341 0.7232
## 4 phase:cond 0.8286 0.7072
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 3 cond 0.8995 0.6796 1.086 0.6991
## 4 phase:cond 0.9060 0.3012 1.095 0.3010
##
## Paired t-test
##
## data: dep by phase
## t = -1.9, df = 17, p-value = 0.07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.096549 0.004086
## sample estimates:
## mean of the differences
## -0.04623
## [1] 0.4569
##
## Paired t-test
##
## data: dep by cond
## t = 0.48, df = 17, p-value = 0.6
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.06015 0.09590
## sample estimates:
## mean of the differences
## 0.01788
## [1] 0.1139
##
## Paired t-test
##
## data: dep by cond
## t = 1.3, df = 17, p-value = 0.2
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.02934 0.12740
## sample estimates:
## mean of the differences
## 0.04903
## [1] 0.3111
##
## Paired t-test
##
## data: dep by cond
## t = 2, df = 17, p-value = 0.06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.002668 0.107463
## sample estimates:
## mean of the differences
## 0.0524
## [1] 0.4732
## $pre
## [1] 0.3170 0.4764 0.7280 0.8121 0.4983 0.6094
##
## $post
## [1] 0.63496 0.20432 0.06085 0.29030 0.31820 0.92779
##
## $pp
## [1] 0.06935 0.79595 0.28146 0.51882
## Generous Intermediate Selfish
## Intermediate 0.8121 NA NA
## Selfish 0.8121 0.8121 NA
## New 0.8121 0.8121 0.8121
## Generous Intermediate Selfish
## Intermediate 0.7620 NA NA
## Selfish 0.4773 0.4773 NA
## New 0.3651 0.4773 0.9278
## [1] 0.2774 0.7960 0.5629 0.6918
## $ANOVA
## Effect DFn DFd SSn SSd F
## 1 (Intercept) 1 17 145.002960029 0.001894 1301189.84347
## 2 phase 1 17 0.000002525 0.001872 0.02293
## 3 cond 3 51 0.116073431 0.443255 4.45173
## 4 phase:cond 3 51 0.073909212 0.497943 2.52329
## p p<.05 ges
## 1 0.0000000000000000000000000000000000000000005851 * 0.993525330
## 2 0.8814339082038329387103203771403059363365173340 0.000002672
## 3 0.0074683187070066761256703635751819092547520995 * 0.109396107
## 4 0.0679888073824788663479523620480904355645179749 0.072540103
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 3 cond 0.8431 0.7492
## 4 phase:cond 0.7519 0.4829
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 3 cond 0.9080 0.009668 * 1.098 0.007468 *
## 4 phase:cond 0.8546 0.078703 1.019 0.067989
##
## Paired t-test
##
## data: dep by phase
## t = 2.4, df = 17, p-value = 0.03
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.01048 0.14272
## sample estimates:
## mean of the differences
## 0.0766
## [1] 0.5761
##
## Paired t-test
##
## data: dep by cond
## t = -3.1, df = 17, p-value = 0.007
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.18563 -0.03471
## sample estimates:
## mean of the differences
## -0.1102
## [1] 0.7261
##
## Paired t-test
##
## data: dep by cond
## t = -2.9, df = 17, p-value = 0.009
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.19100 -0.03165
## sample estimates:
## mean of the differences
## -0.1113
## [1] 0.6949
##
## Paired t-test
##
## data: dep by cond
## t = -3.4, df = 17, p-value = 0.003
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.20571 -0.04901
## sample estimates:
## mean of the differences
## -0.1274
## [1] 0.8083
## $pre
## [1] 0.4181 0.6751 0.7698 0.8139 0.6465 0.8957
##
## $post
## [1] 0.006783 0.008996 0.003197 0.972897 0.619652 0.550757
##
## $pp
## [1] 0.02571 0.65483 0.44708 0.15023
## Generous Intermediate Selfish
## Intermediate 0.8957 NA NA
## Selfish 0.8957 0.8957 NA
## New 0.8957 0.8957 0.8957
## Generous Intermediate Selfish
## Intermediate 0.01799 NA NA
## Selfish 0.01799 0.9729 NA
## New 0.01799 0.7436 0.7436
## [1] 0.1028 0.6548 0.5961 0.3005
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 17 10920.250 262.75 706.5433 0.000000000000002744 *
## 2 phase 1 17 2.250 60.25 0.6349 0.436567178177456383
## 3 cond 3 51 5.639 99.36 0.9648 0.416563284870548944
## 4 phase:cond 3 51 8.750 98.75 1.5063 0.224025935027569068
## ges
## 1 0.954454
## 2 0.004299
## 3 0.010705
## 4 0.016514
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 3 cond 0.7977 0.6158
## 4 phase:cond 0.6549 0.2485
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 3 cond 0.8925 0.4098 1.0751 0.4166
## 4 phase:cond 0.7789 0.2326 0.9107 0.2276
##
## Paired t-test
##
## data: dep by cond
## t = 2.4, df = 17, p-value = 0.03
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1137 1.8863
## sample estimates:
## mean of the differences
## 1
## [1] 0.5611
## $pre
## [1] 0.8076 1.0000 0.4038 0.8381 0.3722 0.1631
##
## $post
## [1] 0.61361 0.02926 0.79032 0.10496 0.80453 0.11146
##
## $pp
## [1] 0.3054 0.7789 0.1974 0.1681
## Generous Intermediate Selfish
## Intermediate 1.0000 NA NA
## Selfish 1.0000 1.0000 NA
## New 0.8075 0.8075 0.8075
## Generous Intermediate Selfish
## Intermediate 0.8045 NA NA
## Selfish 0.1755 0.2229 NA
## New 0.8045 0.8045 0.2229
## [1] 0.4072 0.7789 0.3947 0.3947
pred_poor_t <- prepData(poorer$Predominance.Face,poorerPar,skip=1)
dom_poor_t <- prepData(poorer$NormalizedDur.Face,poorerPar,skip=1)
sup_poor_t <- prepData(poorer$NormalizedDur.Scene,poorerPar,skip=1)
first_poor_t <- prepData(poorer$FirstPercept.Face,poorerPar,skip=1)
aov_pred_po<-ezANOVA(data=pred_poor_t,dv=.(keyVar), wid=.(sbj), within=.(phase,cond), detailed = TRUE)
aov_pred_po
## $ANOVA
## Effect DFn DFd SSn SSd F p
## 1 (Intercept) 1 17 386089.060 9441.2 695.198958 0.000000000000003139
## 2 phase 1 17 0.244 525.1 0.007899 0.930217051078758406
## 3 cond 3 51 32.456 1079.4 0.511147 0.676398495777788877
## 4 phase:cond 3 51 29.808 529.7 0.956689 0.420341677317375928
## p<.05 ges
## 1 * 0.97089144
## 2 0.00002108
## 3 0.00279600
## 4 0.00256846
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 3 cond 0.4887 0.04695 *
## 4 phase:cond 0.6582 0.25506
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 3 cond 0.7543 0.6262 0.8760 0.6528
## 4 phase:cond 0.7957 0.4060 0.9345 0.4162
tpred_po <- paired.t(pred_poor_t)
tpred_po$t$gen
##
## Paired t-test
##
## data: dep by phase
## t = 0.53, df = 17, p-value = 0.6
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.029 3.397
## sample estimates:
## mean of the differences
## 0.6842
tpred_po$d$gen
## [1] 0.1254
tpred_po$t$postgi
##
## Paired t-test
##
## data: dep by cond
## t = 0.71, df = 17, p-value = 0.5
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.531 3.095
## sample estimates:
## mean of the differences
## 0.7819
tpred_po$d$postgi
## [1] 0.1681
tpred_po$t$postgs
##
## Paired t-test
##
## data: dep by cond
## t = 0.38, df = 17, p-value = 0.7
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.761 2.526
## sample estimates:
## mean of the differences
## 0.3823
tpred_po$d$postgs
## [1] 0.08869
tpred_po$t$postgn
##
## Paired t-test
##
## data: dep by cond
## t = 0.26, df = 17, p-value = 0.8
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.578 2.015
## sample estimates:
## mean of the differences
## 0.2185
tpred_po$d$postgn
## [1] 0.06049
aov_dom_po<-ezANOVA(data=dom_poor_t,dv=.(keyVar), wid=.(sbj), within=.(phase,cond), detailed = TRUE)
aov_dom_po
## $ANOVA
## Effect DFn DFd SSn SSd F
## 1 (Intercept) 1 17 145.33741939 0.0027643 893802.5415
## 2 phase 1 17 0.00005753 0.0005577 1.7538
## 3 cond 3 51 0.00983451 0.8010443 0.2087
## 4 phase:cond 3 51 0.06250791 0.5840970 1.8193
## p p<.05 ges
## 1 0.00000000000000000000000000000000000000001424 * 0.99053703
## 2 0.20293523084876935458353841568168718367815018 0.00004144
## 3 0.88990909647199423204710910795256495475769043 0.00703320
## 4 0.15537080749481393948663310311530949547886848 0.04308005
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 3 cond 0.8369 0.73128
## 4 phase:cond 0.4473 0.02723 *
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 3 cond 0.9107 0.8737 1.1022 0.8899
## 4 phase:cond 0.6760 0.1770 0.7682 0.1707
tdom_po <- paired.t(dom_poor_t)
tdom_po$t$gen
##
## Paired t-test
##
## data: dep by phase
## t = 2.2, df = 17, p-value = 0.05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.0009811 0.1005306
## sample estimates:
## mean of the differences
## 0.05076
tdom_po$d$gen
## [1] 0.5071
tdom_po$pval
## $pre
## [1] 0.9803 0.5713 0.1988 0.5413 0.2224 0.3378
##
## $post
## [1] 0.2356 0.3752 0.1385 0.7548 0.6955 0.3950
##
## $pp
## [1] 0.04611 0.74948 0.96124 0.06708
tdom_po$fdr$pre$p.value
## Generous Intermediate Selfish
## Intermediate 0.9803 NA NA
## Selfish 0.6855 0.6855 NA
## New 0.6671 0.6671 0.6757
tdom_po$fdr$post$p.value
## Generous Intermediate Selfish
## Intermediate 0.5925 NA NA
## Selfish 0.5925 0.7548 NA
## New 0.5925 0.7548 0.5925
tdom_po$fdr$pp
## [1] 0.1342 0.9612 0.9612 0.1342
aov_sup_po<-ezANOVA(data=sup_poor_t,dv=.(keyVar), wid=.(sbj), within=.(phase,cond), detailed = TRUE)
aov_sup_po
## $ANOVA
## Effect DFn DFd SSn SSd F
## 1 (Intercept) 1 17 144.97126709 0.001779 1385605.3971
## 2 phase 1 17 0.00001691 0.001726 0.1666
## 3 cond 3 51 0.06539570 0.575511 1.9317
## 4 phase:cond 3 51 0.01442928 0.499743 0.4908
## p p<.05 ges
## 1 0.0000000000000000000000000000000000000000003429 * 0.99261377
## 2 0.6882446091353839889848131861072033643722534180 0.00001568
## 3 0.1361600979606792105602863784952205605804920197 0.05715635
## 4 0.6901932254278441147832268143247347325086593628 0.01319927
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 3 cond 0.8267 0.7018
## 4 phase:cond 0.8028 0.6311
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 3 cond 0.8779 0.1448 1.054 0.1362
## 4 phase:cond 0.8852 0.6680 1.064 0.6902
tsup_po <- paired.t(sup_poor_t)
tsup_po$t$gen
##
## Paired t-test
##
## data: dep by phase
## t = -0.56, df = 17, p-value = 0.6
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.05970 0.03483
## sample estimates:
## mean of the differences
## -0.01244
tsup_po$d$gen
## [1] 0.1309
tsup_po$pval
## $pre
## [1] 0.42257 0.72745 0.05032 0.70449 0.20720 0.05382
##
## $post
## [1] 0.3351 0.6037 0.2483 0.8133 0.7729 0.5348
##
## $pp
## [1] 0.5860 0.7805 0.6281 0.2612
tsup_po$fdr$pre$p.value
## Generous Intermediate Selfish
## Intermediate 0.6339 NA NA
## Selfish 0.7275 0.7275 NA
## New 0.1615 0.4144 0.1615
tsup_po$fdr$post$p.value
## Generous Intermediate Selfish
## Intermediate 0.8133 NA NA
## Selfish 0.8133 0.8133 NA
## New 0.8133 0.8133 0.8133
tsup_po$fdr$pp
## [1] 0.7805 0.7805 0.7805 0.7805
aov_first_po<-ezANOVA(data=first_poor_t,dv=.(keyVar), wid=.(sbj), within=.(phase,cond), detailed = TRUE)
aov_first_po
## $ANOVA
## Effect DFn DFd SSn SSd
## 1 (Intercept) 1 17 9735.11111111111858917865902185440063 478.89
## 2 phase 1 17 0.00000000000000000000000000008697 80.50
## 3 cond 3 51 5.16666666666670515439818700542673 91.83
## 4 phase:cond 3 51 4.27777777777774570466817749547772 84.22
## F p p<.05
## 1 345.58515081206513741562957875430584 0.0000000000009851 *
## 2 0.00000000000000000000000000001837 0.9999999999999967
## 3 0.95644283121597795105373052138020 0.4204571255272189
## 4 0.86345646437994061361820286037982 0.4661090890204816
## ges
## 1 0.9297607046214251269589112780522555
## 2 0.0000000000000000000000000000001183
## 3 0.0069762208386468134435620669364653
## 4 0.0057829515583927458208246541460085
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 3 cond 0.5358 0.08141
## 4 phase:cond 0.7079 0.36650
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 3 cond 0.7929 0.4059 0.9305 0.4161
## 4 phase:cond 0.8299 0.4500 0.9836 0.4647
tfirst_po <- paired.t(first_poor_t)
tfirst_po$t$postgs
##
## Paired t-test
##
## data: dep by cond
## t = 0.68, df = 17, p-value = 0.5
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4718 0.9162
## sample estimates:
## mean of the differences
## 0.2222
tfirst_po$d$postgs
## [1] 0.1592
tfirst_po$pval
## $pre
## [1] 0.4384 0.9163 0.5079 0.5399 0.1576 0.6309
##
## $post
## [1] 0.27306 0.50841 0.09672 0.25964 1.00000 0.10368
##
## $pp
## [1] 0.4467 0.9353 0.8162 0.1720
tfirst_po$fdr$pre$p.value
## Generous Intermediate Selfish
## Intermediate 0.7570 NA NA
## Selfish 0.9163 0.757 NA
## New 0.7570 0.757 0.757
tfirst_po$fdr$post$p.value
## Generous Intermediate Selfish
## Intermediate 0.4096 NA NA
## Selfish 0.6101 0.4096 NA
## New 0.3111 1.0000 0.3111
tfirst_po$fdr$pp
## [1] 0.8935 0.9353 0.9353 0.6879
d_rt_t <- prepData(dpt, parList,skip=1)
aov_rt<-ezANOVA(data=d_rt_t,dv=.(keyVar), wid=.(sbj), within=.(phase,cond), detailed = TRUE)
aov_rt
## $ANOVA
## Effect DFn DFd SSn SSd F
## 1 (Intercept) 1 23 21025384.68 259895 1860.6908
## 2 phase 1 23 1241.28 10721 2.6630
## 3 cond 3 69 48.69 1714 0.6533
## 4 phase:cond 3 69 166.12 1794 2.1299
## p p<.05 ges
## 1 0.00000000000000000000001645 * 0.9871301
## 2 0.11632417023240547437890058 0.0045078
## 3 0.58356435472850498591412816 0.0001776
## 4 0.10432224817373549063947991 0.0006056
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 3 cond 0.8052 0.4532
## 4 phase:cond 0.8896 0.7706
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 3 cond 0.8780 0.5646 1.002 0.5836
## 4 phase:cond 0.9252 0.1097 1.065 0.1043
trt <- paired.t(d_rt_t)
trt$t$gen
##
## Paired t-test
##
## data: dep by phase
## t = 2.9, df = 23, p-value = 0.009
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 2.314 14.225
## sample estimates:
## mean of the differences
## 8.269
trt$d$gen
## [1] 0.5863
trt$t$postgi
##
## Paired t-test
##
## data: dep by cond
## t = -0.94, df = 23, p-value = 0.4
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.963 1.859
## sample estimates:
## mean of the differences
## -1.552
trt$t$postgs
##
## Paired t-test
##
## data: dep by cond
## t = -1.2, df = 23, p-value = 0.3
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -6.264 1.769
## sample estimates:
## mean of the differences
## -2.247
trt$t$postgn
##
## Paired t-test
##
## data: dep by cond
## t = -2.5, df = 23, p-value = 0.02
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -6.0619 -0.5909
## sample estimates:
## mean of the differences
## -3.326
trt$d$postgn
## [1] 0.5135
trt$pval
## $pre
## [1] 0.11637 0.05548 0.22969 0.69772 0.53865 0.64451
##
## $post
## [1] 0.35642 0.25892 0.01932 0.67692 0.19698 0.55375
##
## $pp
## [1] 0.008605 0.250565 0.241958 0.303004
trt$fdr$pre$p.value
## Generous Intermediate Selfish
## Intermediate 0.3491 NA NA
## Selfish 0.3329 0.6977 NA
## New 0.4594 0.6977 0.6977
trt$fdr$post$p.value
## Generous Intermediate Selfish
## Intermediate 0.5346 NA NA
## Selfish 0.5178 0.6769 NA
## New 0.1159 0.5178 0.6645
trt$fdr$pp
## [1] 0.03442 0.30300 0.30300 0.30300
aov_ci<-ezANOVA(data=dpt_ci,dv=.(ci), wid=.(sbj), within=.(cond), detailed = TRUE)
aov_ci
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05 ges
## 1 (Intercept) 1 23 0.01995 0.17411 2.636 0.1181 0.08809
## 2 cond 3 69 0.00310 0.03247 2.196 0.0963 0.01479
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 2 cond 0.8933 0.7841
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 2 cond 0.9285 0.1015 1.069 0.0963
cit <- list()
dat <- dpt_ci %>%
filter(cond=="Generous")
cit$t$gen <- t.test(dat$ci, mu=0)
cit$d$gen <- cohensD(dat$ci, mu=0)
cit$pval[1] <- cit$t$gen$p.value
dat <- dpt_ci %>%
filter(cond=="Intermediate")
cit$t$int <- t.test(dat$ci, mu=0)
cit$d$int <- cohensD(dat$ci, mu=0)
cit$pval[2] <- cit$t$int$p.value
dat <- dpt_ci %>%
filter(cond=="Selfish")
cit$t$sel <- t.test(dat$ci, mu=0)
cit$d$sel <- cohensD(dat$ci, mu=0)
cit$pval[3] <- cit$t$sel$p.value
dat <- dpt_ci %>%
filter(cond=="New")
cit$t$new <- t.test(dat$ci, mu=0)
cit$d$new <- cohensD(dat$ci, mu=0)
cit$pval[4] <- cit$t$new$p.value
cit$t$gen
##
## One Sample t-test
##
## data: dat$ci
## t = -3, df = 23, p-value = 0.006
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.040810 -0.007624
## sample estimates:
## mean of x
## -0.02422
cit$d$gen
## [1] 0.6163
cit$t$int
##
## One Sample t-test
##
## data: dat$ci
## t = -1.1, df = 23, p-value = 0.3
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.03409 0.01034
## sample estimates:
## mean of x
## -0.01187
cit$t$sel
##
## One Sample t-test
##
## data: dat$ci
## t = -1.1, df = 23, p-value = 0.3
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.031903 0.009499
## sample estimates:
## mean of x
## -0.0112
cit$t$new
##
## One Sample t-test
##
## data: dat$ci
## t = -1.1, df = 23, p-value = 0.3
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.030476 0.009724
## sample estimates:
## mean of x
## -0.01038
cit$pval
## [1] 0.00611 0.28033 0.27452 0.29664
p.adjust(cit$pval, method='fdr')
## [1] 0.02444 0.29664 0.29664 0.29664