df3 = read.csv("fastfood-3.csv")
t(df3)
      E1 E2 E3 E4 W1 W2 W3 W4
Item1 25 36 31 26 51 47 47 52
Item2 39 42 39 35 43 39 53 46
Item3 36 24 28 29 42 36 32 33
 r 
 [1] 25 39 36 36 42 24 31 39 28 26 35 29 51 43 42 47 39 36 47 53 32 52 46 33
f1 = c("Item1", "Item2", "Item3")
f2 = c("East", "West")
k1 = length(f1)
k2 = length(f2)
n = 4  
tm1 = gl(k1, 4, n*k1*k2, factor(f1)) 
tm1 
 [1] Item1 Item1 Item1 Item1 Item2 Item2 Item2 Item2 Item3 Item3 Item3 Item3 Item1 Item1 Item1 Item1 Item2 Item2 Item2 Item2 Item3
[22] Item3 Item3 Item3
Levels: Item1 Item2 Item3
tm2 = gl(k2, 4, n*k1*k2, factor(f2)) 
tm2 
 [1] East East East East West West West West East East East East West West West West East East East East West West West West
Levels: East West
 av = aov(r ~ tm1 * tm2)
summary(av) 
            Df Sum Sq Mean Sq F value   Pr(>F)    
tm1          2  385.1   192.5   9.554  0.00149 ** 
tm2          1  715.0   715.0  35.481 1.23e-05 ***
tm1:tm2      2  234.1   117.0   5.808  0.01132 *  
Residuals   18  362.8    20.2                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Since the p-value of 0.00150 for the menu items is less than .05, the null hypothesis is rejected. The mean sales volume of the new menu items are all equal. Additionally, the p-value of 1.2e-05 for the east-west coasts comparison is also less than the .05 significance level. There’s no difference between the means and I can conclude that a significant difference does exist. It shows that there is a difference in sales volumes between the coasts. This can account for many variables such as store location, menu items, and demographics. Lastly, the final p-value of 0.0113 indicates a possible correlation between the menu item and coast location factors.

LS0tCnRpdGxlOiAiZGYzIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCmBgYHtyfQpkZjMgPSByZWFkLmNzdigiZmFzdGZvb2QtMy5jc3YiKQpgYGAKCmBgYHtyfQp0KGRmMykKYGBgCgpgYGB7cn0KIHIgCmBgYAoKYGBge3J9CmYxID0gYygiSXRlbTEiLCAiSXRlbTIiLCAiSXRlbTMiKQpmMiA9IGMoIkVhc3QiLCAiV2VzdCIpCmsxID0gbGVuZ3RoKGYxKQprMiA9IGxlbmd0aChmMikKbiA9IDQgIApgYGAKCmBgYHtyfQp0bTEgPSBnbChrMSwgNCwgbiprMSprMiwgZmFjdG9yKGYxKSkgCnRtMSAKYGBgCgpgYGB7cn0KdG0yID0gZ2woazIsIDQsIG4qazEqazIsIGZhY3RvcihmMikpIAp0bTIgCmBgYAoKYGBge3J9CiBhdiA9IGFvdihyIH4gdG0xICogdG0yKQpgYGAKCmBgYHtyfQpzdW1tYXJ5KGF2KSAKYGBgCgpTaW5jZSB0aGUgcC12YWx1ZSBvZiAwLjAwMTUwIGZvciB0aGUgbWVudSBpdGVtcyBpcyBsZXNzIHRoYW4gLjA1LCB0aGUgbnVsbCBoeXBvdGhlc2lzIGlzIHJlamVjdGVkLiBUaGUgbWVhbiBzYWxlcyB2b2x1bWUgb2YgdGhlIG5ldyBtZW51IGl0ZW1zIGFyZSBhbGwgZXF1YWwuIEFkZGl0aW9uYWxseSwgdGhlIHAtdmFsdWUgb2YgMS4yZS0wNSBmb3IgdGhlIGVhc3Qtd2VzdCBjb2FzdHMgY29tcGFyaXNvbiBpcyBhbHNvIGxlc3MgdGhhbiB0aGUgLjA1IHNpZ25pZmljYW5jZSBsZXZlbC4gVGhlcmUncyBubyBkaWZmZXJlbmNlIGJldHdlZW4gdGhlIG1lYW5zIGFuZCBJIGNhbiBjb25jbHVkZSB0aGF0IGEgc2lnbmlmaWNhbnQgZGlmZmVyZW5jZSBkb2VzIGV4aXN0LiBJdCBzaG93cyB0aGF0IHRoZXJlIGlzIGEgZGlmZmVyZW5jZSBpbiBzYWxlcyB2b2x1bWVzIGJldHdlZW4gdGhlIGNvYXN0cy4gVGhpcyBjYW4gYWNjb3VudCBmb3IgbWFueSB2YXJpYWJsZXMgc3VjaCBhcyBzdG9yZSBsb2NhdGlvbiwgbWVudSBpdGVtcywgYW5kIGRlbW9ncmFwaGljcy4gTGFzdGx5LCB0aGUgZmluYWwgcC12YWx1ZSBvZiAwLjAxMTMgaW5kaWNhdGVzIGEgcG9zc2libGUgY29ycmVsYXRpb24gYmV0d2VlbiB0aGUgbWVudSBpdGVtIGFuZCBjb2FzdCBsb2NhdGlvbiBmYWN0b3JzLg==