getwd()
[1] "/Users/jaclynbazsika/Documents/Documents/MSDS650/w2"
df2 = read.table("fastfood-2.txt", header=TRUE)
r = c(t(as.matrix(df2)))
r 
 [1] 31 27 24 31 28 31 45 29 46 21 18 48 42 36 46 32 17 40
t(df2)
      [,1] [,2] [,3] [,4] [,5] [,6]
Item1   31   31   45   21   42   32
Item2   27   28   29   18   36   17
Item3   24   31   46   48   46   40
f = c("Item1", "Item2", "Item3") 
k = 3 
n = 6   
tm = gl(k, 6, n*k, factor(f)) 
tm 
 [1] Item1 Item1 Item1 Item1 Item1 Item1 Item2 Item2 Item2 Item2 Item2 Item2 Item3 Item3 Item3 Item3 Item3 Item3
Levels: Item1 Item2 Item3
blk = gl(n, k, k*n)            
blk 
 [1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
Levels: 1 2 3 4 5 6
av = aov(r ~ tm + blk)
summary(av) 
            Df Sum Sq Mean Sq F value Pr(>F)  
tm           2  538.8  269.39   4.959 0.0319 *
blk          5  559.8  111.96   2.061 0.1547  
Residuals   10  543.2   54.32                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

With the P-value >0.05(blk), it can be concluded that the null hypothesis can not be rejected. However, for tm, the p-value is < 0.05. This would render the data statistically insignifcant; therefore, the null hypothesis is rejected. For tm, the mean sales volume of new menu items are all equal. For blk, the mean sales volume is not equal.

LS0tCnRpdGxlOiAiZGYyIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCmBgYHtyfQpnZXR3ZCgpCmBgYAoKYGBge3J9CmRmMiA9IHJlYWQudGFibGUoImZhc3Rmb29kLTIudHh0IiwgaGVhZGVyPVRSVUUpCmBgYAoKYGBge3J9CnIgPSBjKHQoYXMubWF0cml4KGRmMikpKQpyIApgYGAKCmBgYHtyfQp0KGRmMikKYGBgCgpgYGB7cn0KZiA9IGMoIkl0ZW0xIiwgIkl0ZW0yIiwgIkl0ZW0zIikgCmsgPSAzIApuID0gNiAgIApgYGAKCmBgYHtyfQp0bSA9IGdsKGssIDYsIG4qaywgZmFjdG9yKGYpKSAKdG0gCmBgYAoKYGBge3J9CmJsayA9IGdsKG4sIGssIGsqbikgICAgICAgICAgICAKYmxrIApgYGAKCmBgYHtyfQphdiA9IGFvdihyIH4gdG0gKyBibGspCmBgYAoKYGBge3J9CnN1bW1hcnkoYXYpIApgYGAKV2l0aCB0aGUgUC12YWx1ZSA+MC4wNShibGspLCBpdCBjYW4gYmUgY29uY2x1ZGVkIHRoYXQgdGhlIG51bGwgaHlwb3RoZXNpcyBjYW4gbm90IGJlIHJlamVjdGVkLiBIb3dldmVyLCBmb3IgdG0sIHRoZSBwLXZhbHVlIGlzIDwgMC4wNS4gVGhpcyB3b3VsZCByZW5kZXIgdGhlIGRhdGEgc3RhdGlzdGljYWxseSBpbnNpZ25pZmNhbnQ7IHRoZXJlZm9yZSwgdGhlIG51bGwgaHlwb3RoZXNpcyBpcyByZWplY3RlZC4gRm9yIHRtLCB0aGUgbWVhbiBzYWxlcyB2b2x1bWUgb2YgbmV3IG1lbnUgaXRlbXMgYXJlIGFsbCBlcXVhbC4gRm9yIGJsaywgdGhlIG1lYW4gc2FsZXMgdm9sdW1lIGlzIG5vdCBlcXVhbC4K