setwd("D:/R-BA/R-Scripts")
**** test.rmd
# for development
knitr::opts_chunk$set(echo=TRUE, eval=TRUE, error=TRUE, warning=TRUE, message=TRUE, cache=FALSE, tidy=FALSE, fig.path='figures/')
# for production
#knitr::opts_chunk$set(echo=TRUE, eval=TRUE, error=FALSE, warning=FALSE, message=FALSE, cache=FALSE, tidy=FALSE, fig.path='figures/')
library(tidyr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
dfrPatient <- read.csv("./data/patient-data.csv", header=T, stringsAsFactors=F)
intRowCount <- nrow(dfrPatient)
head(dfrPatient)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/001 Demetrius White Male FALSE 182.87 76.57
## 2 AC/AH/017 Rosario White Male FALSE 179.12 80.43
## 3 AC/AH/020 Julio Black Male FALSE 169.15 75.48
## 4 AC/AH/022 Lupe White Male FALSE 175.66 94.54
## 5 AC/AH/029 Lavern White Female FALSE 164.47 71.78
## 6 AC/AH/033 Bernie Dog Female TRUE 158.27 69.90
## BirthDate State Pet HealthGrade Died RecordDate
## 1 31-01-1972 Georgia,xxx Dog 2 FALSE 25-11-2015
## 2 09-06-1972 Missouri Dog 2 FALSE 25-11-2015
## 3 03-07-1972 Pennsylvania None 2 FALSE 25-11-2015
## 4 11-08-1972 Florida Cat 1 FALSE 25-11-2015
## 5 06-06-1973 Iowa NULL 2 TRUE 25-11-2015
## 6 25-06-1973 Maryland Dog 2 FALSE 25-11-2015
dfrPatient <-
mutate(dfrPatient,BodyMassIndex=((WeightInKgs*10000)/(HeightInCms*HeightInCms)))
head(dfrPatient)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/001 Demetrius White Male FALSE 182.87 76.57
## 2 AC/AH/017 Rosario White Male FALSE 179.12 80.43
## 3 AC/AH/020 Julio Black Male FALSE 169.15 75.48
## 4 AC/AH/022 Lupe White Male FALSE 175.66 94.54
## 5 AC/AH/029 Lavern White Female FALSE 164.47 71.78
## 6 AC/AH/033 Bernie Dog Female TRUE 158.27 69.90
## BirthDate State Pet HealthGrade Died RecordDate BodyMassIndex
## 1 31-01-1972 Georgia,xxx Dog 2 FALSE 25-11-2015 22.89674
## 2 09-06-1972 Missouri Dog 2 FALSE 25-11-2015 25.06859
## 3 03-07-1972 Pennsylvania None 2 FALSE 25-11-2015 26.38080
## 4 11-08-1972 Florida Cat 1 FALSE 25-11-2015 30.63867
## 5 06-06-1973 Iowa NULL 2 TRUE 25-11-2015 26.53567
## 6 25-06-1973 Maryland Dog 2 FALSE 25-11-2015 27.90487
dfrPatient <- mutate(dfrPatient,BMILabel =
ifelse(dfrPatient$BodyMassIndex < 18.50, "Underweight", ifelse(dfrPatient$BodyMassIndex>=18.50 & dfrPatient$BodyMassIndex<25, "Normal",
ifelse(dfrPatient$BodyMassIndex>=25 & dfrPatient$BodyMassIndex<30 ,"Overweight", "Obese"))))
head(dfrPatient)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/001 Demetrius White Male FALSE 182.87 76.57
## 2 AC/AH/017 Rosario White Male FALSE 179.12 80.43
## 3 AC/AH/020 Julio Black Male FALSE 169.15 75.48
## 4 AC/AH/022 Lupe White Male FALSE 175.66 94.54
## 5 AC/AH/029 Lavern White Female FALSE 164.47 71.78
## 6 AC/AH/033 Bernie Dog Female TRUE 158.27 69.90
## BirthDate State Pet HealthGrade Died RecordDate BodyMassIndex
## 1 31-01-1972 Georgia,xxx Dog 2 FALSE 25-11-2015 22.89674
## 2 09-06-1972 Missouri Dog 2 FALSE 25-11-2015 25.06859
## 3 03-07-1972 Pennsylvania None 2 FALSE 25-11-2015 26.38080
## 4 11-08-1972 Florida Cat 1 FALSE 25-11-2015 30.63867
## 5 06-06-1973 Iowa NULL 2 TRUE 25-11-2015 26.53567
## 6 25-06-1973 Maryland Dog 2 FALSE 25-11-2015 27.90487
## BMILabel
## 1 Normal
## 2 Overweight
## 3 Overweight
## 4 Obese
## 5 Overweight
## 6 Overweight
dfrPatient$Pet <- trimws(tolower(dfrPatient$Pet))
head(dfrPatient,20)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/001 Demetrius White Male FALSE 182.87 76.57
## 2 AC/AH/017 Rosario White Male FALSE 179.12 80.43
## 3 AC/AH/020 Julio Black Male FALSE 169.15 75.48
## 4 AC/AH/022 Lupe White Male FALSE 175.66 94.54
## 5 AC/AH/029 Lavern White Female FALSE 164.47 71.78
## 6 AC/AH/033 Bernie Dog Female TRUE 158.27 69.90
## 7 AC/AH/037 Samuel White Female FALSE 161.69 68.85
## 8 AC/AH/044 Clair White Female No 165.84 70.44
## 9 AC/AH/045 Shirley White Male FALSE 181.32 76.90
## 10 AC/AH/048 Merle Hispanic Male FALSE 167.37 79.06
## 11 AC/AH/049 Martin White Female FALSE 160.06 72.37
## 12 AC/AH/050 Frances White Female FALSE 166.48 67.34
## 13 AC/AH/052 Courtney White Male TRUE 175.39 92.22
## 14 AC/AH/053 Francis White Female TRUE 164.70 75.69
## 15 AC/AH/057 Vernon White Female TRUE 163.79 65.76
## 16 AC/AH/061 Lester Black Male FALSE 181.13 72.33
## 17 AC/AH/063 Robin Hispanic Male FALSE 169.24 73.30
## 18 AC/AH/076 Albert White Male FALSE 176.22 97.67
## 19 AC/AH/077 Tommy Black Male FALSE 174.09 72.20
## 20 AC/AH/086 Kyle Black Male TRUE 180.11 75.72
## BirthDate State Pet HealthGrade Died RecordDate
## 1 31-01-1972 Georgia,xxx dog 2 FALSE 25-11-2015
## 2 09-06-1972 Missouri dog 2 FALSE 25-11-2015
## 3 03-07-1972 Pennsylvania none 2 FALSE 25-11-2015
## 4 11-08-1972 Florida cat 1 FALSE 25-11-2015
## 5 06-06-1973 Iowa null 2 TRUE 25-11-2015
## 6 25-06-1973 Maryland dog 2 FALSE 25-11-2015
## 7 20-03-1972 Pennsylvania none 1 FALSE 25-11-2015
## 8 05-05-1973 North Carolina none 1 FALSE 25-11-2015
## 9 25-12-1971 Louisiana dog 1 FALSE 25-11-2015
## 10 13-07-1973 North Carolina none 2 FALSE 25-12-2015
## 11 28-04-1972 California horse 2 TRUE 25-12-2015
## 12 08-11-1971 Michigan none 1 FALSE 25-12-2015
## 13 16-03-1972 Indiana bird 3 FALSE 25-12-2015
## 14 16-11-1971 Virginia dog 1 FALSE 25-12-2015
## 15 06-01-1972 Illinois cat 3 FALSE 25-12-2015
## 16 16-11-1972 Wisconsin dog 99 TRUE 25-12-2015
## 17 16-11-1971 Illinois none 3 FALSE 25-12-2015
## 18 08-04-1973 Louisiana cat 2 FALSE 25-12-2015
## 19 01-02-1973 Washington cat 3 FALSE 25-12-2015
## 20 12-05-1973 Georgia cat 3 FALSE 25-12-2015
## BodyMassIndex BMILabel
## 1 22.89674 Normal
## 2 25.06859 Overweight
## 3 26.38080 Overweight
## 4 30.63867 Obese
## 5 26.53567 Overweight
## 6 27.90487 Overweight
## 7 26.33526 Overweight
## 8 25.61184 Overweight
## 9 23.39025 Normal
## 10 28.22290 Overweight
## 11 28.24834 Overweight
## 12 24.29679 Normal
## 13 29.97888 Overweight
## 14 27.90303 Overweight
## 15 24.51247 Normal
## 16 22.04640 Normal
## 17 25.59163 Overweight
## 18 31.45218 Obese
## 19 23.82262 Normal
## 20 23.34183 Normal
summarise(group_by(dfrPatient,Pet),n())
## # A tibble: 7 × 2
## Pet `n()`
## <chr> <int>
## 1 bird 9
## 2 cat 29
## 3 dog 32
## 4 horse 1
## 5 none 24
## 6 null 3
## 7 <NA> 2
class(dfrPatient$Pet)
## [1] "character"
dfrPatient$Pet[dfrPatient$Pet=="none"] <- NA
dfrPatient$Pet[dfrPatient$Pet=="null"] <- NA
summarise(group_by(dfrPatient,Pet),n())
## # A tibble: 5 × 2
## Pet `n()`
## <chr> <int>
## 1 bird 9
## 2 cat 29
## 3 dog 32
## 4 horse 1
## 5 <NA> 29
cat("\014")
dfrPatient$Gender <- trimws(tolower(dfrPatient$Gender))
head(dfrPatient,20)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/001 Demetrius White male FALSE 182.87 76.57
## 2 AC/AH/017 Rosario White male FALSE 179.12 80.43
## 3 AC/AH/020 Julio Black male FALSE 169.15 75.48
## 4 AC/AH/022 Lupe White male FALSE 175.66 94.54
## 5 AC/AH/029 Lavern White female FALSE 164.47 71.78
## 6 AC/AH/033 Bernie Dog female TRUE 158.27 69.90
## 7 AC/AH/037 Samuel White female FALSE 161.69 68.85
## 8 AC/AH/044 Clair White female No 165.84 70.44
## 9 AC/AH/045 Shirley White male FALSE 181.32 76.90
## 10 AC/AH/048 Merle Hispanic male FALSE 167.37 79.06
## 11 AC/AH/049 Martin White female FALSE 160.06 72.37
## 12 AC/AH/050 Frances White female FALSE 166.48 67.34
## 13 AC/AH/052 Courtney White male TRUE 175.39 92.22
## 14 AC/AH/053 Francis White female TRUE 164.70 75.69
## 15 AC/AH/057 Vernon White female TRUE 163.79 65.76
## 16 AC/AH/061 Lester Black male FALSE 181.13 72.33
## 17 AC/AH/063 Robin Hispanic male FALSE 169.24 73.30
## 18 AC/AH/076 Albert White male FALSE 176.22 97.67
## 19 AC/AH/077 Tommy Black male FALSE 174.09 72.20
## 20 AC/AH/086 Kyle Black male TRUE 180.11 75.72
## BirthDate State Pet HealthGrade Died RecordDate
## 1 31-01-1972 Georgia,xxx dog 2 FALSE 25-11-2015
## 2 09-06-1972 Missouri dog 2 FALSE 25-11-2015
## 3 03-07-1972 Pennsylvania <NA> 2 FALSE 25-11-2015
## 4 11-08-1972 Florida cat 1 FALSE 25-11-2015
## 5 06-06-1973 Iowa <NA> 2 TRUE 25-11-2015
## 6 25-06-1973 Maryland dog 2 FALSE 25-11-2015
## 7 20-03-1972 Pennsylvania <NA> 1 FALSE 25-11-2015
## 8 05-05-1973 North Carolina <NA> 1 FALSE 25-11-2015
## 9 25-12-1971 Louisiana dog 1 FALSE 25-11-2015
## 10 13-07-1973 North Carolina <NA> 2 FALSE 25-12-2015
## 11 28-04-1972 California horse 2 TRUE 25-12-2015
## 12 08-11-1971 Michigan <NA> 1 FALSE 25-12-2015
## 13 16-03-1972 Indiana bird 3 FALSE 25-12-2015
## 14 16-11-1971 Virginia dog 1 FALSE 25-12-2015
## 15 06-01-1972 Illinois cat 3 FALSE 25-12-2015
## 16 16-11-1972 Wisconsin dog 99 TRUE 25-12-2015
## 17 16-11-1971 Illinois <NA> 3 FALSE 25-12-2015
## 18 08-04-1973 Louisiana cat 2 FALSE 25-12-2015
## 19 01-02-1973 Washington cat 3 FALSE 25-12-2015
## 20 12-05-1973 Georgia cat 3 FALSE 25-12-2015
## BodyMassIndex BMILabel
## 1 22.89674 Normal
## 2 25.06859 Overweight
## 3 26.38080 Overweight
## 4 30.63867 Obese
## 5 26.53567 Overweight
## 6 27.90487 Overweight
## 7 26.33526 Overweight
## 8 25.61184 Overweight
## 9 23.39025 Normal
## 10 28.22290 Overweight
## 11 28.24834 Overweight
## 12 24.29679 Normal
## 13 29.97888 Overweight
## 14 27.90303 Overweight
## 15 24.51247 Normal
## 16 22.04640 Normal
## 17 25.59163 Overweight
## 18 31.45218 Obese
## 19 23.82262 Normal
## 20 23.34183 Normal
summarise(group_by(dfrPatient,Smokes),n())
## # A tibble: 4 × 2
## Smokes `n()`
## <chr> <int>
## 1 FALSE 72
## 2 No 6
## 3 TRUE 18
## 4 Yes 4
class(dfrPatient$Smokes)
## [1] "character"
dfrPatient$Smokes <- as.logical(dfrPatient$Smokes)
class(dfrPatient$Smokes)
## [1] "logical"
summarise(group_by(dfrPatient,Smokes),n())
## # A tibble: 3 × 2
## Smokes `n()`
## <lgl> <int>
## 1 FALSE 72
## 2 TRUE 18
## 3 NA 10
head(dfrPatient,20)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/001 Demetrius White male FALSE 182.87 76.57
## 2 AC/AH/017 Rosario White male FALSE 179.12 80.43
## 3 AC/AH/020 Julio Black male FALSE 169.15 75.48
## 4 AC/AH/022 Lupe White male FALSE 175.66 94.54
## 5 AC/AH/029 Lavern White female FALSE 164.47 71.78
## 6 AC/AH/033 Bernie Dog female TRUE 158.27 69.90
## 7 AC/AH/037 Samuel White female FALSE 161.69 68.85
## 8 AC/AH/044 Clair White female NA 165.84 70.44
## 9 AC/AH/045 Shirley White male FALSE 181.32 76.90
## 10 AC/AH/048 Merle Hispanic male FALSE 167.37 79.06
## 11 AC/AH/049 Martin White female FALSE 160.06 72.37
## 12 AC/AH/050 Frances White female FALSE 166.48 67.34
## 13 AC/AH/052 Courtney White male TRUE 175.39 92.22
## 14 AC/AH/053 Francis White female TRUE 164.70 75.69
## 15 AC/AH/057 Vernon White female TRUE 163.79 65.76
## 16 AC/AH/061 Lester Black male FALSE 181.13 72.33
## 17 AC/AH/063 Robin Hispanic male FALSE 169.24 73.30
## 18 AC/AH/076 Albert White male FALSE 176.22 97.67
## 19 AC/AH/077 Tommy Black male FALSE 174.09 72.20
## 20 AC/AH/086 Kyle Black male TRUE 180.11 75.72
## BirthDate State Pet HealthGrade Died RecordDate
## 1 31-01-1972 Georgia,xxx dog 2 FALSE 25-11-2015
## 2 09-06-1972 Missouri dog 2 FALSE 25-11-2015
## 3 03-07-1972 Pennsylvania <NA> 2 FALSE 25-11-2015
## 4 11-08-1972 Florida cat 1 FALSE 25-11-2015
## 5 06-06-1973 Iowa <NA> 2 TRUE 25-11-2015
## 6 25-06-1973 Maryland dog 2 FALSE 25-11-2015
## 7 20-03-1972 Pennsylvania <NA> 1 FALSE 25-11-2015
## 8 05-05-1973 North Carolina <NA> 1 FALSE 25-11-2015
## 9 25-12-1971 Louisiana dog 1 FALSE 25-11-2015
## 10 13-07-1973 North Carolina <NA> 2 FALSE 25-12-2015
## 11 28-04-1972 California horse 2 TRUE 25-12-2015
## 12 08-11-1971 Michigan <NA> 1 FALSE 25-12-2015
## 13 16-03-1972 Indiana bird 3 FALSE 25-12-2015
## 14 16-11-1971 Virginia dog 1 FALSE 25-12-2015
## 15 06-01-1972 Illinois cat 3 FALSE 25-12-2015
## 16 16-11-1972 Wisconsin dog 99 TRUE 25-12-2015
## 17 16-11-1971 Illinois <NA> 3 FALSE 25-12-2015
## 18 08-04-1973 Louisiana cat 2 FALSE 25-12-2015
## 19 01-02-1973 Washington cat 3 FALSE 25-12-2015
## 20 12-05-1973 Georgia cat 3 FALSE 25-12-2015
## BodyMassIndex BMILabel
## 1 22.89674 Normal
## 2 25.06859 Overweight
## 3 26.38080 Overweight
## 4 30.63867 Obese
## 5 26.53567 Overweight
## 6 27.90487 Overweight
## 7 26.33526 Overweight
## 8 25.61184 Overweight
## 9 23.39025 Normal
## 10 28.22290 Overweight
## 11 28.24834 Overweight
## 12 24.29679 Normal
## 13 29.97888 Overweight
## 14 27.90303 Overweight
## 15 24.51247 Normal
## 16 22.04640 Normal
## 17 25.59163 Overweight
## 18 31.45218 Obese
## 19 23.82262 Normal
## 20 23.34183 Normal
cat("\014")
summarise(group_by(dfrPatient, HealthGrade), n())
## # A tibble: 4 × 2
## HealthGrade `n()`
## <int> <int>
## 1 1 29
## 2 2 30
## 3 3 34
## 4 99 7
class(dfrPatient$HealthGrade)
## [1] "integer"
dfrPatient$HealthGrade[dfrPatient$HealthGrade==1] <- "GOOD"
dfrPatient$HealthGrade[dfrPatient$HealthGrade==2] <- "NORMAL"
dfrPatient$HealthGrade[dfrPatient$HealthGrade==3] <- "BAD"
dfrPatient$HealthGrade[dfrPatient$HealthGrade==99] <- NA
class(dfrPatient$HealthGrade)
## [1] "character"
summarise(group_by(dfrPatient, HealthGrade), n())
## # A tibble: 4 × 2
## HealthGrade `n()`
## <chr> <int>
## 1 BAD 34
## 2 GOOD 29
## 3 NORMAL 30
## 4 <NA> 7
head(dfrPatient,20)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/001 Demetrius White male FALSE 182.87 76.57
## 2 AC/AH/017 Rosario White male FALSE 179.12 80.43
## 3 AC/AH/020 Julio Black male FALSE 169.15 75.48
## 4 AC/AH/022 Lupe White male FALSE 175.66 94.54
## 5 AC/AH/029 Lavern White female FALSE 164.47 71.78
## 6 AC/AH/033 Bernie Dog female TRUE 158.27 69.90
## 7 AC/AH/037 Samuel White female FALSE 161.69 68.85
## 8 AC/AH/044 Clair White female NA 165.84 70.44
## 9 AC/AH/045 Shirley White male FALSE 181.32 76.90
## 10 AC/AH/048 Merle Hispanic male FALSE 167.37 79.06
## 11 AC/AH/049 Martin White female FALSE 160.06 72.37
## 12 AC/AH/050 Frances White female FALSE 166.48 67.34
## 13 AC/AH/052 Courtney White male TRUE 175.39 92.22
## 14 AC/AH/053 Francis White female TRUE 164.70 75.69
## 15 AC/AH/057 Vernon White female TRUE 163.79 65.76
## 16 AC/AH/061 Lester Black male FALSE 181.13 72.33
## 17 AC/AH/063 Robin Hispanic male FALSE 169.24 73.30
## 18 AC/AH/076 Albert White male FALSE 176.22 97.67
## 19 AC/AH/077 Tommy Black male FALSE 174.09 72.20
## 20 AC/AH/086 Kyle Black male TRUE 180.11 75.72
## BirthDate State Pet HealthGrade Died RecordDate
## 1 31-01-1972 Georgia,xxx dog NORMAL FALSE 25-11-2015
## 2 09-06-1972 Missouri dog NORMAL FALSE 25-11-2015
## 3 03-07-1972 Pennsylvania <NA> NORMAL FALSE 25-11-2015
## 4 11-08-1972 Florida cat GOOD FALSE 25-11-2015
## 5 06-06-1973 Iowa <NA> NORMAL TRUE 25-11-2015
## 6 25-06-1973 Maryland dog NORMAL FALSE 25-11-2015
## 7 20-03-1972 Pennsylvania <NA> GOOD FALSE 25-11-2015
## 8 05-05-1973 North Carolina <NA> GOOD FALSE 25-11-2015
## 9 25-12-1971 Louisiana dog GOOD FALSE 25-11-2015
## 10 13-07-1973 North Carolina <NA> NORMAL FALSE 25-12-2015
## 11 28-04-1972 California horse NORMAL TRUE 25-12-2015
## 12 08-11-1971 Michigan <NA> GOOD FALSE 25-12-2015
## 13 16-03-1972 Indiana bird BAD FALSE 25-12-2015
## 14 16-11-1971 Virginia dog GOOD FALSE 25-12-2015
## 15 06-01-1972 Illinois cat BAD FALSE 25-12-2015
## 16 16-11-1972 Wisconsin dog <NA> TRUE 25-12-2015
## 17 16-11-1971 Illinois <NA> BAD FALSE 25-12-2015
## 18 08-04-1973 Louisiana cat NORMAL FALSE 25-12-2015
## 19 01-02-1973 Washington cat BAD FALSE 25-12-2015
## 20 12-05-1973 Georgia cat BAD FALSE 25-12-2015
## BodyMassIndex BMILabel
## 1 22.89674 Normal
## 2 25.06859 Overweight
## 3 26.38080 Overweight
## 4 30.63867 Obese
## 5 26.53567 Overweight
## 6 27.90487 Overweight
## 7 26.33526 Overweight
## 8 25.61184 Overweight
## 9 23.39025 Normal
## 10 28.22290 Overweight
## 11 28.24834 Overweight
## 12 24.29679 Normal
## 13 29.97888 Overweight
## 14 27.90303 Overweight
## 15 24.51247 Normal
## 16 22.04640 Normal
## 17 25.59163 Overweight
## 18 31.45218 Obese
## 19 23.82262 Normal
## 20 23.34183 Normal
summarise(group_by(dfrPatient, State), n())
## # A tibble: 34 × 2
## State `n()`
## <chr> <int>
## 1 Alabama 2
## 2 Arizona 2
## 3 California 13
## 4 Colorado 1
## 5 Connecticut 1
## 6 Florida 8
## 7 Georgia 3
## 8 Georgia,xxx 1
## 9 Hawaii 2
## 10 Illinois 4
## # ... with 24 more rows
dfrPatient$State[dfrPatient$State=="Georgia,xxx"] <- "Georgia"
summarise(group_by(dfrPatient, State), n())
## # A tibble: 33 × 2
## State `n()`
## <chr> <int>
## 1 Alabama 2
## 2 Arizona 2
## 3 California 13
## 4 Colorado 1
## 5 Connecticut 1
## 6 Florida 8
## 7 Georgia 4
## 8 Hawaii 2
## 9 Illinois 4
## 10 Indiana 4
## # ... with 23 more rows
head(dfrPatient,8)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/001 Demetrius White male FALSE 182.87 76.57
## 2 AC/AH/017 Rosario White male FALSE 179.12 80.43
## 3 AC/AH/020 Julio Black male FALSE 169.15 75.48
## 4 AC/AH/022 Lupe White male FALSE 175.66 94.54
## 5 AC/AH/029 Lavern White female FALSE 164.47 71.78
## 6 AC/AH/033 Bernie Dog female TRUE 158.27 69.90
## 7 AC/AH/037 Samuel White female FALSE 161.69 68.85
## 8 AC/AH/044 Clair White female NA 165.84 70.44
## BirthDate State Pet HealthGrade Died RecordDate
## 1 31-01-1972 Georgia dog NORMAL FALSE 25-11-2015
## 2 09-06-1972 Missouri dog NORMAL FALSE 25-11-2015
## 3 03-07-1972 Pennsylvania <NA> NORMAL FALSE 25-11-2015
## 4 11-08-1972 Florida cat GOOD FALSE 25-11-2015
## 5 06-06-1973 Iowa <NA> NORMAL TRUE 25-11-2015
## 6 25-06-1973 Maryland dog NORMAL FALSE 25-11-2015
## 7 20-03-1972 Pennsylvania <NA> GOOD FALSE 25-11-2015
## 8 05-05-1973 North Carolina <NA> GOOD FALSE 25-11-2015
## BodyMassIndex BMILabel
## 1 22.89674 Normal
## 2 25.06859 Overweight
## 3 26.38080 Overweight
## 4 30.63867 Obese
## 5 26.53567 Overweight
## 6 27.90487 Overweight
## 7 26.33526 Overweight
## 8 25.61184 Overweight
summarise(group_by(dfrPatient, Race), n())
## # A tibble: 6 × 2
## Race `n()`
## <chr> <int>
## 1 Asian 5
## 2 Bi-Racial 1
## 3 Black 8
## 4 Dog 1
## 5 Hispanic 17
## 6 White 68
dfrPatient$Race <- trimws(tolower(dfrPatient$Race))
dfrPatient$Race[dfrPatient$Race=="dog"] <- NA
dfrPatient$Race[dfrPatient$Race=="bi-racial"] <- NA
summarise(group_by(dfrPatient, Race), n())
## # A tibble: 5 × 2
## Race `n()`
## <chr> <int>
## 1 asian 5
## 2 black 8
## 3 hispanic 17
## 4 white 68
## 5 <NA> 2
head(dfrPatient,8)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/001 Demetrius white male FALSE 182.87 76.57
## 2 AC/AH/017 Rosario white male FALSE 179.12 80.43
## 3 AC/AH/020 Julio black male FALSE 169.15 75.48
## 4 AC/AH/022 Lupe white male FALSE 175.66 94.54
## 5 AC/AH/029 Lavern white female FALSE 164.47 71.78
## 6 AC/AH/033 Bernie <NA> female TRUE 158.27 69.90
## 7 AC/AH/037 Samuel white female FALSE 161.69 68.85
## 8 AC/AH/044 Clair white female NA 165.84 70.44
## BirthDate State Pet HealthGrade Died RecordDate
## 1 31-01-1972 Georgia dog NORMAL FALSE 25-11-2015
## 2 09-06-1972 Missouri dog NORMAL FALSE 25-11-2015
## 3 03-07-1972 Pennsylvania <NA> NORMAL FALSE 25-11-2015
## 4 11-08-1972 Florida cat GOOD FALSE 25-11-2015
## 5 06-06-1973 Iowa <NA> NORMAL TRUE 25-11-2015
## 6 25-06-1973 Maryland dog NORMAL FALSE 25-11-2015
## 7 20-03-1972 Pennsylvania <NA> GOOD FALSE 25-11-2015
## 8 05-05-1973 North Carolina <NA> GOOD FALSE 25-11-2015
## BodyMassIndex BMILabel
## 1 22.89674 Normal
## 2 25.06859 Overweight
## 3 26.38080 Overweight
## 4 30.63867 Obese
## 5 26.53567 Overweight
## 6 27.90487 Overweight
## 7 26.33526 Overweight
## 8 25.61184 Overweight
dfrPatient <- na.omit(dfrPatient)
head(dfrPatient,8)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/001 Demetrius white male FALSE 182.87 76.57
## 2 AC/AH/017 Rosario white male FALSE 179.12 80.43
## 4 AC/AH/022 Lupe white male FALSE 175.66 94.54
## 9 AC/AH/045 Shirley white male FALSE 181.32 76.90
## 11 AC/AH/049 Martin white female FALSE 160.06 72.37
## 13 AC/AH/052 Courtney white male TRUE 175.39 92.22
## 14 AC/AH/053 Francis white female TRUE 164.70 75.69
## 15 AC/AH/057 Vernon white female TRUE 163.79 65.76
## BirthDate State Pet HealthGrade Died RecordDate BodyMassIndex
## 1 31-01-1972 Georgia dog NORMAL FALSE 25-11-2015 22.89674
## 2 09-06-1972 Missouri dog NORMAL FALSE 25-11-2015 25.06859
## 4 11-08-1972 Florida cat GOOD FALSE 25-11-2015 30.63867
## 9 25-12-1971 Louisiana dog GOOD FALSE 25-11-2015 23.39025
## 11 28-04-1972 California horse NORMAL TRUE 25-12-2015 28.24834
## 13 16-03-1972 Indiana bird BAD FALSE 25-12-2015 29.97888
## 14 16-11-1971 Virginia dog GOOD FALSE 25-12-2015 27.90303
## 15 06-01-1972 Illinois cat BAD FALSE 25-12-2015 24.51247
## BMILabel
## 1 Normal
## 2 Overweight
## 4 Obese
## 9 Normal
## 11 Overweight
## 13 Overweight
## 14 Overweight
## 15 Normal
cat("\014")
summarise(group_by(dfrPatient, BMILabel), n())
## # A tibble: 3 × 2
## BMILabel `n()`
## <chr> <int>
## 1 Normal 12
## 2 Obese 5
## 3 Overweight 43
cat("\014")
summarise(group_by(dfrPatient, Gender), n())
## # A tibble: 2 × 2
## Gender `n()`
## <chr> <int>
## 1 female 34
## 2 male 26
cat("\014")
summarise(group_by(dfrPatient, Race), n())
## # A tibble: 4 × 2
## Race `n()`
## <chr> <int>
## 1 asian 4
## 2 black 3
## 3 hispanic 9
## 4 white 44
cat("\014")
summarise(group_by(dfrPatient, Died), n())
## # A tibble: 2 × 2
## Died `n()`
## <lgl> <int>
## 1 FALSE 27
## 2 TRUE 33
cat("\014")
summarise(group_by(dfrPatient, Pet), n())
## # A tibble: 4 × 2
## Pet `n()`
## <chr> <int>
## 1 bird 8
## 2 cat 28
## 3 dog 23
## 4 horse 1
cat("\014")
summarise(group_by(dfrPatient, Smokes), n())
## # A tibble: 2 × 2
## Smokes `n()`
## <lgl> <int>
## 1 FALSE 50
## 2 TRUE 10
cat("\014")
summarise(group_by(dfrPatient, HealthGrade), n())
## # A tibble: 3 × 2
## HealthGrade `n()`
## <chr> <int>
## 1 BAD 24
## 2 GOOD 19
## 3 NORMAL 17
cat("\014")
summarise(group_by(dfrPatient, State), n())
## # A tibble: 28 × 2
## State `n()`
## <chr> <int>
## 1 Alabama 1
## 2 Arizona 2
## 3 California 7
## 4 Florida 5
## 5 Georgia 3
## 6 Hawaii 1
## 7 Illinois 3
## 8 Indiana 3
## 9 Iowa 1
## 10 Kansas 1
## # ... with 18 more rows
head(arrange(dfrPatient,desc(BodyMassIndex)),10)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/SG/009 Sammy white male FALSE 166.84 88.25
## 2 AC/SG/064 Jon white male FALSE 169.16 90.08
## 3 AC/AH/076 Albert white male FALSE 176.22 97.67
## 4 AC/AH/022 Lupe white male FALSE 175.66 94.54
## 5 AC/AH/248 Andrea white male FALSE 178.64 97.05
## 6 AC/SG/067 Thomas white male FALSE 167.51 84.15
## 7 AC/AH/052 Courtney white male TRUE 175.39 92.22
## 8 AC/AH/127 Jame white male FALSE 167.75 82.06
## 9 AC/SG/055 Evan white male FALSE 166.75 79.06
## 10 AC/SG/181 Terry hispanic male FALSE 177.14 88.70
## BirthDate State Pet HealthGrade Died RecordDate BodyMassIndex
## 1 04-03-1972 Vermont dog GOOD FALSE 25-06-2016 31.70402
## 2 04-10-1972 Illinois cat NORMAL TRUE 25-07-2016 31.47988
## 3 08-04-1973 Louisiana cat NORMAL FALSE 25-12-2015 31.45218
## 4 11-08-1972 Florida cat GOOD FALSE 25-11-2015 30.63867
## 5 12-01-1973 Indiana cat GOOD TRUE 25-05-2016 30.41152
## 6 19-07-1972 Pennsylvania bird NORMAL TRUE 25-07-2016 29.98974
## 7 16-03-1972 Indiana bird BAD FALSE 25-12-2015 29.97888
## 8 29-10-1972 Texas dog GOOD TRUE 25-01-2016 29.16127
## 9 24-02-1972 Illinois bird BAD TRUE 25-07-2016 28.43316
## 10 24-11-1971 Indiana cat BAD TRUE 25-09-2016 28.26769
## BMILabel
## 1 Obese
## 2 Obese
## 3 Obese
## 4 Obese
## 5 Obese
## 6 Overweight
## 7 Overweight
## 8 Overweight
## 9 Overweight
## 10 Overweight
head(arrange(dfrPatient, BodyMassIndex),10)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/SG/193 Ronnie white male TRUE 185.43 73.63
## 2 AC/SG/099 Leslie asian male FALSE 172.72 67.62
## 3 AC/AH/001 Demetrius white male FALSE 182.87 76.57
## 4 AC/AH/086 Kyle black male TRUE 180.11 75.72
## 5 AC/AH/045 Shirley white male FALSE 181.32 76.90
## 6 AC/AH/114 Kris hispanic male FALSE 177.75 74.84
## 7 AC/AH/077 Tommy black male FALSE 174.09 72.20
## 8 AC/AH/150 Brett white male TRUE 181.56 79.54
## 9 AC/AH/057 Vernon white female TRUE 163.79 65.76
## 10 AC/AH/207 Bobbie white female FALSE 163.01 65.19
## BirthDate State Pet HealthGrade Died RecordDate BodyMassIndex
## 1 05-06-1973 Iowa dog BAD FALSE 25-09-2016 21.41385
## 2 04-02-1972 Ohio cat GOOD FALSE 25-07-2016 22.66678
## 3 31-01-1972 Georgia dog NORMAL FALSE 25-11-2015 22.89674
## 4 12-05-1973 Georgia cat BAD FALSE 25-12-2015 23.34183
## 5 25-12-1971 Louisiana dog GOOD FALSE 25-11-2015 23.39025
## 6 19-11-1972 Pennsylvania bird BAD FALSE 25-01-2016 23.68725
## 7 01-02-1973 Washington cat BAD FALSE 25-12-2015 23.82262
## 8 03-05-1972 Kentucky dog GOOD TRUE 25-02-2016 24.12933
## 9 06-01-1972 Illinois cat BAD FALSE 25-12-2015 24.51247
## 10 17-05-1973 Florida dog NORMAL FALSE 25-03-2016 24.53310
## BMILabel
## 1 Normal
## 2 Normal
## 3 Normal
## 4 Normal
## 5 Normal
## 6 Normal
## 7 Normal
## 8 Normal
## 9 Normal
## 10 Normal
summarise(group_by(dfrPatient,Gender,Race), n())
## Source: local data frame [8 x 3]
## Groups: Gender [?]
##
## Gender Race `n()`
## <chr> <chr> <int>
## 1 female asian 2
## 2 female black 1
## 3 female hispanic 4
## 4 female white 27
## 5 male asian 2
## 6 male black 2
## 7 male hispanic 5
## 8 male white 17
summarise(group_by(dfrPatient, Race, Gender), min(BodyMassIndex),max(BodyMassIndex), mean(BodyMassIndex))
## Source: local data frame [8 x 5]
## Groups: Race [?]
##
## Race Gender `min(BodyMassIndex)` `max(BodyMassIndex)`
## <chr> <chr> <dbl> <dbl>
## 1 asian female 25.57631 28.19431
## 2 asian male 22.66678 27.24885
## 3 black female 26.71407 26.71407
## 4 black male 23.34183 23.82262
## 5 hispanic female 25.03916 26.89942
## 6 hispanic male 23.68725 28.26769
## 7 white female 24.51247 28.24834
## 8 white male 21.41385 31.70402
## # ... with 1 more variables: `mean(BodyMassIndex)` <dbl>
filter(dfrPatient, Died==TRUE)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/049 Martin white female FALSE 160.06 72.37
## 2 AC/AH/127 Jame white male FALSE 167.75 82.06
## 3 AC/AH/133 Clyde hispanic male FALSE 181.15 83.93
## 4 AC/AH/150 Brett white male TRUE 181.56 79.54
## 5 AC/AH/154 Tony white female FALSE 160.03 64.30
## 6 AC/AH/156 George white male FALSE 165.62 76.72
## 7 AC/AH/160 Rory asian female FALSE 159.67 71.88
## 8 AC/AH/176 Jerry asian male FALSE 175.21 83.65
## 9 AC/AH/180 Drew white female FALSE 160.80 64.77
## 10 AC/AH/186 Christopher white female FALSE 157.95 67.41
## 11 AC/AH/211 Son white female FALSE 157.16 69.64
## 12 AC/AH/219 Jay white female FALSE 163.47 72.89
## 13 AC/AH/233 Marion white female FALSE 163.97 66.71
## 14 AC/AH/248 Andrea white male FALSE 178.64 97.05
## 15 AC/AH/249 Jesus hispanic female TRUE 159.78 68.31
## 16 AC/SG/010 Theo asian female FALSE 159.32 64.92
## 17 AC/SG/016 Jimmie black female FALSE 161.84 69.97
## 18 AC/SG/046 Carl hispanic male FALSE 171.41 81.70
## 19 AC/SG/055 Evan white male FALSE 166.75 79.06
## 20 AC/SG/064 Jon white male FALSE 169.16 90.08
## 21 AC/SG/065 Shayne white female FALSE 157.01 66.56
## 22 AC/SG/067 Thomas white male FALSE 167.51 84.15
## 23 AC/SG/068 Valentine hispanic female FALSE 160.47 68.20
## 24 AC/SG/084 Brian hispanic male FALSE 174.25 80.93
## 25 AC/SG/101 Jason white female FALSE 159.23 69.96
## 26 AC/SG/123 Darnell white female TRUE 162.32 72.72
## 27 AC/SG/134 Daryl white female TRUE 162.59 69.76
## 28 AC/SG/155 Raymond white female FALSE 158.35 69.72
## 29 AC/SG/165 Elmer white female FALSE 162.18 67.81
## 30 AC/SG/179 Logan white male FALSE 183.10 82.47
## 31 AC/SG/181 Terry hispanic male FALSE 177.14 88.70
## 32 AC/SG/197 Stacy white female FALSE 159.44 66.21
## 33 AC/SG/234 Luis hispanic female FALSE 164.88 68.07
## BirthDate State Pet HealthGrade Died RecordDate
## 1 28-04-1972 California horse NORMAL TRUE 25-12-2015
## 2 29-10-1972 Texas dog GOOD TRUE 25-01-2016
## 3 13-10-1973 Washington cat BAD TRUE 25-02-2016
## 4 03-05-1972 Kentucky dog GOOD TRUE 25-02-2016
## 5 30-08-1973 California dog GOOD TRUE 25-02-2016
## 6 09-07-1972 California dog GOOD TRUE 25-02-2016
## 7 22-09-1973 Florida cat NORMAL TRUE 25-02-2016
## 8 01-05-1973 Virginia dog BAD TRUE 25-03-2016
## 9 18-02-1973 Oregon cat GOOD TRUE 25-03-2016
## 10 06-05-1972 New Jersey dog BAD TRUE 25-03-2016
## 11 14-07-1973 California cat NORMAL TRUE 25-04-2016
## 12 07-04-1972 North Carolina bird GOOD TRUE 25-04-2016
## 13 23-12-1971 Ohio cat BAD TRUE 25-04-2016
## 14 12-01-1973 Indiana cat GOOD TRUE 25-05-2016
## 15 23-04-1972 Alabama cat NORMAL TRUE 25-05-2016
## 16 29-01-1973 New York cat NORMAL TRUE 25-06-2016
## 17 03-04-1972 Arizona cat BAD TRUE 25-06-2016
## 18 05-08-1973 Mississippi bird NORMAL TRUE 25-06-2016
## 19 24-02-1972 Illinois bird BAD TRUE 25-07-2016
## 20 04-10-1972 Illinois cat NORMAL TRUE 25-07-2016
## 21 05-04-1972 California dog BAD TRUE 25-07-2016
## 22 19-07-1972 Pennsylvania bird NORMAL TRUE 25-07-2016
## 23 15-04-1972 Tennessee cat BAD TRUE 25-07-2016
## 24 06-03-1972 Virginia dog NORMAL TRUE 25-07-2016
## 25 28-09-1973 Michigan dog NORMAL TRUE 25-07-2016
## 26 03-09-1972 North Carolina bird GOOD TRUE 25-08-2016
## 27 28-05-1972 Texas cat NORMAL TRUE 25-08-2016
## 28 02-06-1972 California cat BAD TRUE 25-08-2016
## 29 25-03-1972 Washington bird GOOD TRUE 25-08-2016
## 30 24-10-1972 Ohio dog BAD TRUE 25-09-2016
## 31 24-11-1971 Indiana cat BAD TRUE 25-09-2016
## 32 08-11-1972 New York cat GOOD TRUE 25-10-2016
## 33 10-11-1971 Pennsylvania cat BAD TRUE 25-10-2016
## BodyMassIndex BMILabel
## 1 28.24834 Overweight
## 2 29.16127 Overweight
## 3 25.57647 Overweight
## 4 24.12933 Normal
## 5 25.10777 Overweight
## 6 27.96939 Overweight
## 7 28.19431 Overweight
## 8 27.24885 Overweight
## 9 25.04966 Overweight
## 10 27.01998 Overweight
## 11 28.19517 Overweight
## 12 27.27670 Overweight
## 13 24.81202 Normal
## 14 30.41152 Obese
## 15 26.75713 Overweight
## 16 25.57631 Overweight
## 17 26.71407 Overweight
## 18 27.80672 Overweight
## 19 28.43316 Overweight
## 20 31.47988 Obese
## 21 26.99968 Overweight
## 22 29.98974 Overweight
## 23 26.48480 Overweight
## 24 26.65410 Overweight
## 25 27.59307 Overweight
## 26 27.60005 Overweight
## 27 26.38875 Overweight
## 28 27.80489 Overweight
## 29 25.78096 Overweight
## 30 24.59910 Normal
## 31 28.26769 Overweight
## 32 26.04528 Overweight
## 33 25.03916 Overweight
nrow(filter(dfrPatient, Died==TRUE))
## [1] 33
filter(dfrPatient, Died==TRUE & BMILabel=="Overweight")
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/049 Martin white female FALSE 160.06 72.37
## 2 AC/AH/127 Jame white male FALSE 167.75 82.06
## 3 AC/AH/133 Clyde hispanic male FALSE 181.15 83.93
## 4 AC/AH/154 Tony white female FALSE 160.03 64.30
## 5 AC/AH/156 George white male FALSE 165.62 76.72
## 6 AC/AH/160 Rory asian female FALSE 159.67 71.88
## 7 AC/AH/176 Jerry asian male FALSE 175.21 83.65
## 8 AC/AH/180 Drew white female FALSE 160.80 64.77
## 9 AC/AH/186 Christopher white female FALSE 157.95 67.41
## 10 AC/AH/211 Son white female FALSE 157.16 69.64
## 11 AC/AH/219 Jay white female FALSE 163.47 72.89
## 12 AC/AH/249 Jesus hispanic female TRUE 159.78 68.31
## 13 AC/SG/010 Theo asian female FALSE 159.32 64.92
## 14 AC/SG/016 Jimmie black female FALSE 161.84 69.97
## 15 AC/SG/046 Carl hispanic male FALSE 171.41 81.70
## 16 AC/SG/055 Evan white male FALSE 166.75 79.06
## 17 AC/SG/065 Shayne white female FALSE 157.01 66.56
## 18 AC/SG/067 Thomas white male FALSE 167.51 84.15
## 19 AC/SG/068 Valentine hispanic female FALSE 160.47 68.20
## 20 AC/SG/084 Brian hispanic male FALSE 174.25 80.93
## 21 AC/SG/101 Jason white female FALSE 159.23 69.96
## 22 AC/SG/123 Darnell white female TRUE 162.32 72.72
## 23 AC/SG/134 Daryl white female TRUE 162.59 69.76
## 24 AC/SG/155 Raymond white female FALSE 158.35 69.72
## 25 AC/SG/165 Elmer white female FALSE 162.18 67.81
## 26 AC/SG/181 Terry hispanic male FALSE 177.14 88.70
## 27 AC/SG/197 Stacy white female FALSE 159.44 66.21
## 28 AC/SG/234 Luis hispanic female FALSE 164.88 68.07
## BirthDate State Pet HealthGrade Died RecordDate
## 1 28-04-1972 California horse NORMAL TRUE 25-12-2015
## 2 29-10-1972 Texas dog GOOD TRUE 25-01-2016
## 3 13-10-1973 Washington cat BAD TRUE 25-02-2016
## 4 30-08-1973 California dog GOOD TRUE 25-02-2016
## 5 09-07-1972 California dog GOOD TRUE 25-02-2016
## 6 22-09-1973 Florida cat NORMAL TRUE 25-02-2016
## 7 01-05-1973 Virginia dog BAD TRUE 25-03-2016
## 8 18-02-1973 Oregon cat GOOD TRUE 25-03-2016
## 9 06-05-1972 New Jersey dog BAD TRUE 25-03-2016
## 10 14-07-1973 California cat NORMAL TRUE 25-04-2016
## 11 07-04-1972 North Carolina bird GOOD TRUE 25-04-2016
## 12 23-04-1972 Alabama cat NORMAL TRUE 25-05-2016
## 13 29-01-1973 New York cat NORMAL TRUE 25-06-2016
## 14 03-04-1972 Arizona cat BAD TRUE 25-06-2016
## 15 05-08-1973 Mississippi bird NORMAL TRUE 25-06-2016
## 16 24-02-1972 Illinois bird BAD TRUE 25-07-2016
## 17 05-04-1972 California dog BAD TRUE 25-07-2016
## 18 19-07-1972 Pennsylvania bird NORMAL TRUE 25-07-2016
## 19 15-04-1972 Tennessee cat BAD TRUE 25-07-2016
## 20 06-03-1972 Virginia dog NORMAL TRUE 25-07-2016
## 21 28-09-1973 Michigan dog NORMAL TRUE 25-07-2016
## 22 03-09-1972 North Carolina bird GOOD TRUE 25-08-2016
## 23 28-05-1972 Texas cat NORMAL TRUE 25-08-2016
## 24 02-06-1972 California cat BAD TRUE 25-08-2016
## 25 25-03-1972 Washington bird GOOD TRUE 25-08-2016
## 26 24-11-1971 Indiana cat BAD TRUE 25-09-2016
## 27 08-11-1972 New York cat GOOD TRUE 25-10-2016
## 28 10-11-1971 Pennsylvania cat BAD TRUE 25-10-2016
## BodyMassIndex BMILabel
## 1 28.24834 Overweight
## 2 29.16127 Overweight
## 3 25.57647 Overweight
## 4 25.10777 Overweight
## 5 27.96939 Overweight
## 6 28.19431 Overweight
## 7 27.24885 Overweight
## 8 25.04966 Overweight
## 9 27.01998 Overweight
## 10 28.19517 Overweight
## 11 27.27670 Overweight
## 12 26.75713 Overweight
## 13 25.57631 Overweight
## 14 26.71407 Overweight
## 15 27.80672 Overweight
## 16 28.43316 Overweight
## 17 26.99968 Overweight
## 18 29.98974 Overweight
## 19 26.48480 Overweight
## 20 26.65410 Overweight
## 21 27.59307 Overweight
## 22 27.60005 Overweight
## 23 26.38875 Overweight
## 24 27.80489 Overweight
## 25 25.78096 Overweight
## 26 28.26769 Overweight
## 27 26.04528 Overweight
## 28 25.03916 Overweight
nrow(filter(dfrPatient, Died==TRUE & BMILabel=="Overweight"))
## [1] 28
filter(dfrPatient, Race == "hispanic" & Gender == "female")
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/249 Jesus hispanic female TRUE 159.78 68.31
## 2 AC/SG/068 Valentine hispanic female FALSE 160.47 68.20
## 3 AC/SG/122 Michal hispanic female FALSE 160.09 68.94
## 4 AC/SG/234 Luis hispanic female FALSE 164.88 68.07
## BirthDate State Pet HealthGrade Died RecordDate BodyMassIndex
## 1 23-04-1972 Alabama cat NORMAL TRUE 25-05-2016 26.75713
## 2 15-04-1972 Tennessee cat BAD TRUE 25-07-2016 26.48480
## 3 16-12-1971 South Carolina dog GOOD FALSE 25-08-2016 26.89942
## 4 10-11-1971 Pennsylvania cat BAD TRUE 25-10-2016 25.03916
## BMILabel
## 1 Overweight
## 2 Overweight
## 3 Overweight
## 4 Overweight
nrow(filter(dfrPatient, Race == "hispanic" & Gender == "female"))
## [1] 4
set.seed(707)
sample_n(dfrPatient, 10)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 13 AC/AH/052 Courtney white male TRUE 175.39 92.22
## 48 AC/AH/219 Jay white female FALSE 163.47 72.89
## 30 AC/AH/150 Brett white male TRUE 181.56 79.54
## 55 AC/AH/248 Andrea white male FALSE 178.64 97.05
## 73 AC/SG/084 Brian hispanic male FALSE 174.25 80.93
## 67 AC/SG/064 Jon white male FALSE 169.16 90.08
## 80 AC/SG/122 Michal hispanic female FALSE 160.09 68.94
## 9 AC/AH/045 Shirley white male FALSE 181.32 76.90
## 20 AC/AH/086 Kyle black male TRUE 180.11 75.72
## 57 AC/SG/002 Jan white female TRUE 161.57 67.92
## BirthDate State Pet HealthGrade Died RecordDate
## 13 16-03-1972 Indiana bird BAD FALSE 25-12-2015
## 48 07-04-1972 North Carolina bird GOOD TRUE 25-04-2016
## 30 03-05-1972 Kentucky dog GOOD TRUE 25-02-2016
## 55 12-01-1973 Indiana cat GOOD TRUE 25-05-2016
## 73 06-03-1972 Virginia dog NORMAL TRUE 25-07-2016
## 67 04-10-1972 Illinois cat NORMAL TRUE 25-07-2016
## 80 16-12-1971 South Carolina dog GOOD FALSE 25-08-2016
## 9 25-12-1971 Louisiana dog GOOD FALSE 25-11-2015
## 20 12-05-1973 Georgia cat BAD FALSE 25-12-2015
## 57 03-07-1973 Arizona dog BAD FALSE 25-05-2016
## BodyMassIndex BMILabel
## 13 29.97888 Overweight
## 48 27.27670 Overweight
## 30 24.12933 Normal
## 55 30.41152 Obese
## 73 26.65410 Overweight
## 67 31.47988 Obese
## 80 26.89942 Overweight
## 9 23.39025 Normal
## 20 23.34183 Normal
## 57 26.01814 Overweight