# Steps 
# Took Indicators
# Subset data with indicators , Calender date and price
# Calucalte return price
# Remove Outliers
# Remove multi collinearity
# Remove NA'S
# Normalize indicator data
# Split data into 75% train and 25 test 
# Create Linear model for train data
# Find Coefficients with higher P value
# Build model for train data.
# Predict return price for test data 
# Forecast results. 
# How do we forecast ? what package ,  should date be unbroken 
#REVENUEUSD         Revenues (USD)
#GP                 Gross Profit
#OPEX           Operating Expenses
#EBITUSD            Earning Before Interest & Taxes (USD)
#NETINC           Net Income
#EPSUSD           Earnings per Basic Share (USD)
#NCFO           Net Cash Flow from Operations
#NCFI                 Net Cash Flow from Investing
#NCFF                 Net Cash Flow from Financing
#NCF                  Net Cash Flow / Change in Cash & Cash Equivalents
#ASSETS               Total Assets
#CASHNEQUSD         Cash and Equivalents (USD)
#LIABILITIES        Total Liabilities
#INVESTMENTS        Investments
#EQUITYUSD          hareholders Equity (USD
#DE                     Debt to Equity Ratio        
#EBITDA             Earnings Before Interest, Taxes & Depreciation Amortization                                     
#FCF                    Free Cash Flow      
#PE1                    Price to Earnings Ratio     
#PB                     Price to Book Value             nam



#Defining the Variables(Indicators Selected) from the list

indicator_list<-c(3,7,15,18, 25,28,32,35, 39,78,42,49,57,58, 59, 61,68,70, 86,90,93,94)



#Reading the file into a data frame
stock_data <- read.csv('/Users/jyothi/Downloads/data_file_ARQ.csv', header = T, sep =',')

#initializing the returns vector and loading values into it
return_price<-vector();
### Computing  Return price
#log of the returns for the price
for(i in 2:length(stock_data[,1])){
  if (identical(stock_data[i,1],stock_data[i-1,1])){
    return_price[i] = (stock_data[i,72]/stock_data[i-1,72]);
  }else{
    return_price[i] = 0;
  }
}
return_price[1]=0;

#combining return price to Stock Data
stock_data<-cbind(stock_data,return_price)



#Selecting only the indiactors chosen

stock_factors <- na.omit(stock_data[indicator_list])
#plot(stock_factors$assets)
stock_factors<-subset(stock_factors, stock_factors$assets < 40000000000)
#plot(stock_factors$assets)
stock_factors<-subset(stock_factors, stock_factors$cashnequsd < 6000000000)
#plot(stock_factors$cashnequsd)
stock_factors<-subset(stock_factors, stock_factors$de > -100)
stock_factors<-subset(stock_factors, stock_factors$de < 100)
#plot(stock_factors$de)
#plot(stock_factors$ebitda)
stock_factors<-subset(stock_factors, stock_factors$ebitda > -500000000)
stock_factors<-subset(stock_factors, stock_factors$ebitda < 2000000000)
#plot(stock_factors$ebitda)
#plot(stock_factors$ebitusd)
stock_factors<-subset(stock_factors, stock_factors$ebitusd  > -400000000)
stock_factors<-subset(stock_factors, stock_factors$ebitusd < 1500000000)
#plot(stock_factors$ebitusd)
#View(stock_factors)
stock_factors<-subset(stock_factors, stock_factors$epsusd > -10)
#plot(stock_factors$epsusd)
stock_factors<-subset(stock_factors, stock_factors$epsusd < 10)
#plot(stock_factors$epsusd)
stock_factors<-subset(stock_factors, stock_factors$equityusd >  -1000000000)
#plot(stock_factors$equityusd)
stock_factors<-subset(stock_factors, stock_factors$equityusd <  20000000000)
#plot(stock_factors$equityusd)
stock_factors_new <- stock_factors
#stock_factors <- stock_factors_new
#plot(stock_factors$fcf)
stock_factors<-subset(stock_factors, stock_factors$fcf <   1500000000)
stock_factors<-subset(stock_factors, stock_factors$fcf  >   -1000000000)
#plot(stock_factors$fcf)
#plot(stock_factors$revenueusd)
stock_factors<-subset(stock_factors, stock_factors$revenueusd  <   8000000000)
#plot(stock_factors$revenueusd)
stock_factors<-subset(stock_factors, stock_factors$revenueusd  >   -100000)
#plot(stock_factors$revenueusd)
#plot(stock_factors$gp)
stock_factors<-subset(stock_factors, stock_factors$gp  <    3000000000)
stock_factors<-subset(stock_factors, stock_factors$gp  >    -4000000)
#plot(stock_factors$gp)
stock_factors<-subset(stock_factors, stock_factors$liabilities  <    25000000000)
stock_factors<-subset(stock_factors, stock_factors$liabilities  >    -80000)
#plot(stock_factors$liabilities)
stock_factors_new <- stock_factors
#plot(stock_factors$ncff)
stock_factors<-subset(stock_factors, stock_factors$ncff   < 2000000000)
#plot(stock_factors$ncff)
stock_factors<-subset(stock_factors, stock_factors$ncff   > -1500000000)
#plot(stock_factors$ncff)
#View(stock_factors_new)
stock_factors<-subset(stock_factors, stock_factors$ncfi   < 1000000000)
stock_factors<-subset(stock_factors, stock_factors$ncfi   < 1000000000)
#plot(stock_factors$ncfi)
stock_factors<-subset(stock_factors, stock_factors$ncfi   > - 2000000000)
#plot(stock_factors$ncfi)
stock_factors<-subset(stock_factors, stock_factors$ncfo   < 1500000000)
#plot(stock_factors$ncfo)
stock_factors<-subset(stock_factors, stock_factors$ncfo   > -500000000)
#plot(stock_factors$ncfo)
stock_factors_new <- stock_factors
#plot(stock_factors$netinc)
stock_factors<-subset(stock_factors, stock_factors$netinc   > -500000000)
#plot(stock_factors$netinc)
#plot(stock_factors$netinc)
stock_factors<-subset(stock_factors, stock_factors$netinc   < 1000000000)
#plot(stock_factors$netinc)
#plot(stock_factors$pb)
stock_factors<-subset(stock_factors, stock_factors$pb   < 10000)
stock_factors<-subset(stock_factors, stock_factors$pb   <200)
stock_factors<-subset(stock_factors, stock_factors$pb   > -200)
#plot(stock_factors$pb)
#plot(stock_factors$pe1)
stock_factors<-subset(stock_factors, stock_factors$pe1 > -1000)
stock_factors<-subset(stock_factors, stock_factors$pe1 < 1000)
#plot(stock_factors$pe1)
stock_factors_new <- stock_factors
#plot(stock_factors$sharesbas)
stock_factors<-subset(stock_factors, stock_factors$sharesbas < 800000000)
#plot(stock_factors$sharesbas)
#plot(stock_factors$tangibles)
stock_factors<-subset(stock_factors, stock_factors$tangibles < 20000000000)
#plot(stock_factors$tangibles)
#plot(stock_factors$workingcapital)
stock_factors<-subset(stock_factors, stock_factors$workingcapital >  -1500000000)
#plot(stock_factors$workingcapital)
stock_factors<-subset(stock_factors, stock_factors$workingcapital < 6000000000)
#plot(stock_factors$workingcapital)
stock_factors_new <- stock_factors
#View (stock_factors_new)

#####################Multicollinearity Removal#########



stock_factors_new <- stock_factors_new[ ,-c(1,22)]
sink("/Users/jyothi/Desktop/cor.txt")
cor(stock_factors_new)
##                      assets  cashnequsd            de      ebitda
## assets          1.000000000  0.61421508  0.0782112544  0.83899851
## cashnequsd      0.614215079  1.00000000  0.0365081290  0.60458431
## de              0.078211254  0.03650813  1.0000000000  0.06269383
## ebitda          0.838998510  0.60458431  0.0626938302  1.00000000
## ebitusd         0.742595158  0.58001121  0.0444972107  0.96363758
## epsusd          0.235966783  0.19675398  0.0288497325  0.40764767
## equityusd       0.899765681  0.62279702  0.0275480022  0.78455830
## fcf             0.386186942  0.44547074  0.0294319370  0.48776439
## revenueusd      0.769944853  0.59396030  0.0662162712  0.74379501
## gp              0.806747034  0.63428636  0.0661628765  0.82904399
## liabilities     0.962654770  0.55148906  0.1014117036  0.79623986
## ncff           -0.162384874 -0.12605673  0.0066065380 -0.24640434
## ncfi           -0.460766693 -0.22590503 -0.0503986453 -0.40006375
## ncfo            0.702608344  0.55144658  0.0575961132  0.76826401
## netinc          0.632897074  0.54753817  0.0253376649  0.89281569
## pb             -0.003325166  0.01478398  0.5403373489  0.01669836
## pe1             0.043807234  0.03581321 -0.0008833853  0.06134799
## sharesbas       0.688486571  0.59694030  0.0327751468  0.63941738
## tangibles       0.931149266  0.59337986  0.0808760753  0.79537863
## workingcapital  0.559316932  0.73375250  0.0169005771  0.55067337
##                    ebitusd      epsusd    equityusd         fcf
## assets          0.74259516  0.23596678  0.899765681  0.38618694
## cashnequsd      0.58001121  0.19675398  0.622797020  0.44547074
## de              0.04449721  0.02884973  0.027548002  0.02943194
## ebitda          0.96363758  0.40764767  0.784558295  0.48776439
## ebitusd         1.00000000  0.45425849  0.714081767  0.51975006
## epsusd          0.45425849  1.00000000  0.257673865  0.21543515
## equityusd       0.71408177  0.25767386  1.000000000  0.38798529
## fcf             0.51975006  0.21543515  0.387985292  1.00000000
## revenueusd      0.70192224  0.27164316  0.688376123  0.41675110
## gp              0.78894894  0.28266526  0.742147423  0.49506087
## liabilities     0.69356867  0.20225501  0.753153852  0.35344194
## ncff           -0.26661924 -0.10483488 -0.165869133 -0.41292779
## ncfi           -0.32392860 -0.10827465 -0.426020247 -0.03994817
## ncfo            0.71924796  0.27655192  0.671425053  0.78360998
## netinc          0.95404019  0.50739838  0.656816092  0.51211626
## pb              0.02034100  0.02065151 -0.006716599  0.02247697
## pe1             0.06101799  0.07439753  0.051495711  0.03601164
## sharesbas       0.57786280  0.12284752  0.666471898  0.34293056
## tangibles       0.68823342  0.22934215  0.820558567  0.28276013
## workingcapital  0.54578386  0.23358872  0.636742525  0.39013498
##                  revenueusd          gp  liabilities         ncff
## assets          0.769944853  0.80674703  0.962654770 -0.162384874
## cashnequsd      0.593960298  0.63428636  0.551489056 -0.126056728
## de              0.066216271  0.06616288  0.101411704  0.006606538
## ebitda          0.743795005  0.82904399  0.796239860 -0.246404342
## ebitusd         0.701922242  0.78894894  0.693568667 -0.266619239
## epsusd          0.271643158  0.28266526  0.202255007 -0.104834878
## equityusd       0.688376123  0.74214742  0.753153852 -0.165869133
## fcf             0.416751095  0.49506087  0.353441940 -0.412927790
## revenueusd      1.000000000  0.78376149  0.749847268 -0.220969783
## gp              0.783761493  1.00000000  0.773573679 -0.243806024
## liabilities     0.749847268  0.77357368  1.000000000 -0.148794728
## ncff           -0.220969783 -0.24380602 -0.148794728  1.000000000
## ncfi           -0.316798948 -0.35392671 -0.435581231 -0.455934980
## ncfo            0.609154717  0.69953337  0.656410785 -0.293864271
## netinc          0.623455697  0.70343212  0.563238166 -0.261607223
## pb              0.002378546  0.02040166 -0.001392047 -0.002440969
## pe1             0.039886615  0.04474907  0.035364463 -0.011452220
## sharesbas       0.571983721  0.66866987  0.637308950 -0.160438083
## tangibles       0.749534746  0.74089207  0.908638572 -0.118267783
## workingcapital  0.616422661  0.58883200  0.465930659 -0.137293039
##                        ncfi        ncfo      netinc           pb
## assets         -0.460766693  0.70260834  0.63289707 -0.003325166
## cashnequsd     -0.225905027  0.55144658  0.54753817  0.014783977
## de             -0.050398645  0.05759611  0.02533766  0.540337349
## ebitda         -0.400063752  0.76826401  0.89281569  0.016698357
## ebitusd        -0.323928598  0.71924796  0.95404019  0.020341003
## epsusd         -0.108274652  0.27655192  0.50739838  0.020651509
## equityusd      -0.426020247  0.67142505  0.65681609 -0.006716599
## fcf            -0.039948165  0.78360998  0.51211626  0.022476972
## revenueusd     -0.316798948  0.60915472  0.62345570  0.002378546
## gp             -0.353926714  0.69953337  0.70343212  0.020401663
## liabilities    -0.435581231  0.65641079  0.56323817 -0.001392047
## ncff           -0.455934980 -0.29386427 -0.26160722 -0.002440969
## ncfi            1.000000000 -0.40025187 -0.27062287 -0.006801858
## ncfo           -0.400251871  1.00000000  0.66058173  0.017157584
## netinc         -0.270622865  0.66058173  1.00000000  0.022462637
## pb             -0.006801858  0.01715758  0.02246264  1.000000000
## pe1            -0.030509905  0.04865358  0.06394589 -0.009267894
## sharesbas      -0.319376831  0.54944951  0.50376558  0.025466026
## tangibles      -0.479200211  0.67490590  0.57879543 -0.005176550
## workingcapital -0.206030627  0.44972139  0.52867111  0.004470168
##                          pe1   sharesbas   tangibles workingcapital
## assets          0.0438072338  0.68848657  0.93114927    0.559316932
## cashnequsd      0.0358132116  0.59694030  0.59337986    0.733752498
## de             -0.0008833853  0.03277515  0.08087608    0.016900577
## ebitda          0.0613479949  0.63941738  0.79537863    0.550673370
## ebitusd         0.0610179915  0.57786280  0.68823342    0.545783865
## epsusd          0.0743975276  0.12284752  0.22934215    0.233588721
## equityusd       0.0514957106  0.66647190  0.82055857    0.636742525
## fcf             0.0360116375  0.34293056  0.28276013    0.390134985
## revenueusd      0.0398866149  0.57198372  0.74953475    0.616422661
## gp              0.0447490652  0.66866987  0.74089207    0.588832000
## liabilities     0.0353644634  0.63730895  0.90863857    0.465930659
## ncff           -0.0114522201 -0.16043808 -0.11826778   -0.137293039
## ncfi           -0.0305099051 -0.31937683 -0.47920021   -0.206030627
## ncfo            0.0486535837  0.54944951  0.67490590    0.449721388
## netinc          0.0639458904  0.50376558  0.57879543    0.528671109
## pb             -0.0092678945  0.02546603 -0.00517655    0.004470168
## pe1             1.0000000000  0.02520183  0.03836747    0.041335192
## sharesbas       0.0252018287  1.00000000  0.64790893    0.509420427
## tangibles       0.0383674668  0.64790893  1.00000000    0.549589281
## workingcapital  0.0413351919  0.50942043  0.54958928    1.000000000
stock_factors <- stock_factors[  , -c(2,6,20)]

### Unique Dates
## -- Train 
#2011-03-31 
#2011-06-30 
#2011-09-30 
#2011-12-31 
#2012-03-31 
#2012-06-30
#2012-09-30
#2012-12-31 
#2013-03-31 
#2013-06-30 
#2013-09-30 
#2013-12-31 
#2014-03-31
#2014-06-30 
#2014-09-30 
# --- Test 
#2014-12-31 
#2015-03-31 
#2015-06-30 
#2015-09-30 
#2015-12-31 
sink()

summary(stock_factors)
##      calendardate     cashnequsd              de         
##  2014-12-31: 3049   Min.   :0.000e+00   Min.   :-98.899  
##  2011-03-31: 2989   1st Qu.:8.394e+06   1st Qu.:  0.316  
##  2015-03-31: 2971   Median :3.879e+07   Median :  0.782  
##  2012-12-31: 2970   Mean   :1.603e+08   Mean   :  1.163  
##  2013-12-31: 2968   3rd Qu.:1.426e+08   3rd Qu.:  1.641  
##  2011-06-30: 2963   Max.   :5.701e+09   Max.   : 99.951  
##  (Other)   :41002                                        
##      ebitda               epsusd          equityusd         
##  Min.   :-379491000   Min.   :-9.8000   Min.   :-9.950e+08  
##  1st Qu.:   -193000   1st Qu.:-0.0800   1st Qu.: 3.700e+07  
##  Median :   9433000   Median : 0.0900   Median : 1.957e+08  
##  Mean   :  56064850   Mean   : 0.1434   Mean   : 7.256e+08  
##  3rd Qu.:  56860250   3rd Qu.: 0.4200   3rd Qu.: 7.548e+08  
##  Max.   :1575000000   Max.   : 9.9200   Max.   : 1.968e+10  
##                                                             
##       fcf               revenueusd               gp            
##  Min.   :-969912000   Min.   :    -87662   Min.   :  -3979000  
##  1st Qu.:  -4218648   1st Qu.:  14554400   1st Qu.:   5360750  
##  Median :    793000   Median :  96138000   Median :  35730000  
##  Mean   :  18702520   Mean   : 396538169   Mean   : 133685150  
##  3rd Qu.:  20045250   3rd Qu.: 393002000   3rd Qu.: 135595500  
##  Max.   :1432000000   Max.   :7973107000   Max.   :2994000000  
##                                                                
##   liabilities             ncff                 ncfi           
##  Min.   :0.000e+00   Min.   :-1.470e+09   Min.   :-1.969e+09  
##  1st Qu.:2.629e+07   1st Qu.:-1.042e+07   1st Qu.:-2.750e+07  
##  Median :1.718e+08   Median :-1.263e+05   Median :-4.044e+06  
##  Mean   :1.091e+09   Mean   :-4.523e+06   Mean   :-3.721e+07  
##  3rd Qu.:1.037e+09   3rd Qu.: 1.696e+06   3rd Qu.:-1.185e+05  
##  Max.   :2.279e+10   Max.   : 1.943e+09   Max.   : 9.890e+08  
##                                                               
##       ncfo                netinc                 pb          
##  Min.   :-498613000   Min.   :-475000000   Min.   :-199.416  
##  1st Qu.:   -960730   1st Qu.:  -2051107   1st Qu.:   1.192  
##  Median :   5756052   Median :   1997438   Median :   2.143  
##  Mean   :  43404249   Mean   :  20474458   Mean   :   3.153  
##  3rd Qu.:  41940000   3rd Qu.:  20432225   3rd Qu.:   3.932  
##  Max.   :1490000000   Max.   : 984000000   Max.   : 199.221  
##                                                              
##       pe1             sharesbas         workingcapital      
##  Min.   :-998.000   Min.   :    45161   Min.   :-1.490e+09  
##  1st Qu.:  -3.821   1st Qu.: 17249770   1st Qu.: 1.047e+07  
##  Median :  12.553   Median : 38322158   Median : 7.390e+07  
##  Mean   :  10.516   Mean   : 69641064   Mean   : 2.665e+08  
##  3rd Qu.:  22.848   3rd Qu.: 80937901   3rd Qu.: 2.749e+08  
##  Max.   : 993.000   Max.   :798026043   Max.   : 5.985e+09  
##                                                             
##   return_price   
##  Min.   :0.0000  
##  1st Qu.:0.8500  
##  Median :0.9893  
##  Mean   :   Inf  
##  3rd Qu.:1.1076  
##  Max.   :   Inf  
## 
#View(stock_factors)
#stock_factors <- na.omit(stock_factors)

#Finding the unique dates 

stock_factors<-unique(stock_factors)
#unique(stock_factors$calendardate)
#View(cal_date)
#View(stock_factors)


## remove Calender Return price  to normalise rest of the factors.
data_norm<-stock_factors[  , -c(19)]


for (k in 2:18) {
  #normalizing each independent var
  x<-(data_norm[,k]-mean(data_norm[,k]))/sd(data_norm[,k])
  #merging the normalized var to the original dataset
  data_norm<-cbind(data_norm,x)
  #naming the normalized variable
  names(data_norm)[NCOL(data_norm)]<-paste(colnames(data_norm[k]),"_n",sep="")
  
}

### Select normalised data , calenderdate and Return price.
stock_factors_date <- data_norm[c(1,19:35)]
stock_factors_date["return_price"]<-stock_factors[,19]

### Subset data by calendar Date 
stock_factor_2011_06_30  <- subset(stock_factors_date , calendardate =='2011-06-30')
stock_factor_2011_06_30 <- stock_factor_2011_06_30[,-(1)]
stock_factor_2011_09_30 <- subset(stock_factors_date , calendardate =='2011-09-30' )
stock_factor_2011_09_30 <- stock_factor_2011_09_30[,-1]
stock_factor_2011_12_31 <- subset(stock_factors_date , calendardate =='2011-12-31' )
stock_factor_2011_12_31 <- stock_factor_2011_12_31[,-1]
stock_factor_2012_03_31 <- subset(stock_factors_date , calendardate =='2012-03-31' )
stock_factor_2012_03_31 <- stock_factor_2012_03_31[,-1]
stock_factor_2012_06_30 <- subset(stock_factors_date , calendardate =='2012-06-30' )
stock_factor_2012_06_30 <- stock_factor_2012_06_30[,-1]
stock_factor_2012_09_30 <- subset(stock_factors_date , calendardate =='2012-09-30' )
stock_factor_2012_09_30 <- stock_factor_2012_09_30[,-1]
stock_factor_2012_12_31  <- subset(stock_factors_date , calendardate =='2012-12-31' )
stock_factor_2012_12_31 <- stock_factor_2012_12_31[,-1]
stock_factor_2013_03_31 <- subset(stock_factors_date , calendardate =='2013-03-31' )
stock_factor_2013_03_31  <- stock_factor_2013_03_31 [,-1]
stock_factor_2013_06_30 <- subset(stock_factors_date , calendardate =='2013-06-30' )
stock_factor_2013_06_30 <- stock_factor_2013_06_30[,-1]
stock_factor_2013_09_30 <- subset(stock_factors_date , calendardate =='2013-09-30' )
stock_factor_2013_09_30 <- stock_factor_2013_09_30[,-1]
stock_factor_2013_12_31 <- subset(stock_factors_date , calendardate =='2013-12-31' )
stock_factor_2013_12_31 <- stock_factor_2013_12_31[,-1]
stock_factor_2014_03_31 <- subset(stock_factors_date , calendardate =='2014-03-31' )
stock_factor_2014_03_31 <- stock_factor_2014_03_31[,-1]
stock_factor_2014_06_30 <- subset(stock_factors_date , calendardate =='2014-06-30' )
stock_factor_2014_06_30 <- stock_factor_2014_06_30[,-1]
stock_factor_2014_09_30 <- subset(stock_factors_date , calendardate =='2014-09-30' )
stock_factor_2014_09_30 <- stock_factor_2014_09_30[,-1]

# Creates List of 15 stock_factors for each calender date
my.list <- list( stock_factor_2011_06_30, stock_factor_2011_09_30,
                stock_factor_2011_12_31,stock_factor_2012_03_31,stock_factor_2012_06_30,stock_factor_2012_09_30,stock_factor_2012_12_31,stock_factor_2013_03_31,
                stock_factor_2013_06_30,stock_factor_2013_09_30,stock_factor_2013_12_31,stock_factor_2014_03_31,
                stock_factor_2014_06_30,stock_factor_2014_09_30)
#View(my.list[1])
for (i in 1:length(my.list)) {
  obj <- as.data.frame(my.list[i])
  lm_model <- lm(return_price ~ . , data = obj)
  print(summary(lm_model))
  #View(my.list[i])
}
## 
## Call:
## lm(formula = return_price ~ ., data = obj)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8274 -0.1222 -0.0040  0.1015  7.3536 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       8.789e-01  4.864e-03 180.689  < 2e-16 ***
## cashnequsd_n     -4.316e-03  8.321e-03  -0.519  0.60401    
## de_n             -1.726e-02  6.148e-03  -2.808  0.00502 ** 
## ebitda_n          2.582e-02  2.598e-02   0.994  0.32038    
## epsusd_n          1.908e-02  5.783e-03   3.300  0.00098 ***
## equityusd_n      -1.600e-02  1.071e-02  -1.494  0.13532    
## fcf_n            -3.313e-03  1.074e-02  -0.309  0.75770    
## revenueusd_n     -5.181e-03  9.546e-03  -0.543  0.58731    
## gp_n              2.228e-03  1.018e-02   0.219  0.82684    
## liabilities_n    -4.700e-03  1.299e-02  -0.362  0.71760    
## ncff_n           -5.408e-03  7.544e-03  -0.717  0.47356    
## ncfi_n            1.938e-03  8.145e-03   0.238  0.81195    
## ncfo_n            1.184e-02  1.465e-02   0.808  0.41917    
## netinc_n          2.425e-03  1.937e-02   0.125  0.90039    
## pb_n              3.821e-02  6.637e-03   5.758  9.4e-09 ***
## pe1_n             1.539e-02  4.830e-03   3.187  0.00145 ** 
## sharesbas_n      -4.728e-05  7.355e-03  -0.006  0.99487    
## workingcapital_n -4.700e-03  9.023e-03  -0.521  0.60248    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2592 on 2944 degrees of freedom
## Multiple R-squared:  0.02692,    Adjusted R-squared:  0.0213 
## F-statistic: 4.791 on 17 and 2944 DF,  p-value: 3.069e-10
## 
## 
## Call:
## lm(formula = return_price ~ ., data = obj)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.619  -0.230  -0.055   0.145  84.207 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.9458514  0.0321309  29.437   <2e-16 ***
## cashnequsd_n     -0.0428069  0.0550956  -0.777   0.4372    
## de_n              0.4289061  0.0392490  10.928   <2e-16 ***
## ebitda_n         -0.0199314  0.1659624  -0.120   0.9044    
## epsusd_n          0.0327520  0.0386259   0.848   0.3965    
## equityusd_n       0.0314696  0.0705670   0.446   0.6557    
## fcf_n             0.0368658  0.0894578   0.412   0.6803    
## revenueusd_n     -0.0022733  0.0634233  -0.036   0.9714    
## gp_n             -0.0196365  0.0652298  -0.301   0.7634    
## liabilities_n    -0.1275810  0.0844979  -1.510   0.1312    
## ncff_n            0.0039441  0.0561670   0.070   0.9440    
## ncfi_n           -0.0004256  0.0519632  -0.008   0.9935    
## ncfo_n           -0.0055202  0.1174307  -0.047   0.9625    
## netinc_n          0.0274447  0.1124885   0.244   0.8073    
## pb_n             -0.9197303  0.0415430 -22.139   <2e-16 ***
## pe1_n             0.0308529  0.0318037   0.970   0.3321    
## sharesbas_n       0.1047645  0.0498233   2.103   0.0356 *  
## workingcapital_n -0.0182780  0.0571972  -0.320   0.7493    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.714 on 2907 degrees of freedom
## Multiple R-squared:  0.145,  Adjusted R-squared:   0.14 
## F-statistic:    29 on 17 and 2907 DF,  p-value: < 2.2e-16
## 
## 
## Call:
## lm(formula = return_price ~ ., data = obj)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0764 -0.1491 -0.0368  0.1020 12.8273 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       1.1227447  0.0074348 151.012  < 2e-16 ***
## cashnequsd_n     -0.0069652  0.0128768  -0.541 0.588610    
## de_n              0.0011991  0.0087808   0.137 0.891387    
## ebitda_n         -0.0078248  0.0298623  -0.262 0.793316    
## epsusd_n          0.0271174  0.0071771   3.778 0.000161 ***
## equityusd_n      -0.0103807  0.0161411  -0.643 0.520196    
## fcf_n             0.0124862  0.0154970   0.806 0.420474    
## revenueusd_n      0.0091391  0.0137329   0.665 0.505788    
## gp_n             -0.0039288  0.0148905  -0.264 0.791914    
## liabilities_n     0.0001761  0.0176696   0.010 0.992047    
## ncff_n            0.0046722  0.0116267   0.402 0.687822    
## ncfi_n            0.0035367  0.0142612   0.248 0.804159    
## ncfo_n           -0.0053633  0.0208678  -0.257 0.797188    
## netinc_n         -0.0114562  0.0201946  -0.567 0.570562    
## pb_n              0.0266308  0.0093020   2.863 0.004227 ** 
## pe1_n            -0.0057518  0.0079501  -0.723 0.469435    
## sharesbas_n       0.0092518  0.0116017   0.797 0.425255    
## workingcapital_n  0.0080115  0.0134800   0.594 0.552343    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3995 on 2939 degrees of freedom
## Multiple R-squared:  0.01049,    Adjusted R-squared:  0.004769 
## F-statistic: 1.833 on 17 and 2939 DF,  p-value: 0.01953
## 
## 
## Call:
## lm(formula = return_price ~ ., data = obj)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8490 -0.1118 -0.0141  0.0871  5.0294 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.9826584  0.0045484 216.044  < 2e-16 ***
## cashnequsd_n      0.0024226  0.0077825   0.311 0.755608    
## de_n              0.0103135  0.0064033   1.611 0.107366    
## ebitda_n         -0.0119237  0.0238054  -0.501 0.616492    
## epsusd_n          0.0163807  0.0047111   3.477 0.000514 ***
## equityusd_n      -0.0128386  0.0094944  -1.352 0.176407    
## fcf_n             0.0254931  0.0104018   2.451 0.014311 *  
## revenueusd_n     -0.0048316  0.0084632  -0.571 0.568109    
## gp_n              0.0140563  0.0096445   1.457 0.145103    
## liabilities_n     0.0058807  0.0116131   0.506 0.612626    
## ncff_n            0.0011044  0.0073055   0.151 0.879852    
## ncfi_n           -0.0081863  0.0090290  -0.907 0.364656    
## ncfo_n           -0.0164564  0.0137102  -1.200 0.230118    
## netinc_n          0.0101930  0.0159605   0.639 0.523107    
## pb_n              0.0010554  0.0063920   0.165 0.868864    
## pe1_n             0.0032982  0.0051562   0.640 0.522445    
## sharesbas_n      -0.0019913  0.0070799  -0.281 0.778525    
## workingcapital_n -0.0007458  0.0081809  -0.091 0.927370    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2425 on 2913 degrees of freedom
## Multiple R-squared:  0.01405,    Adjusted R-squared:  0.008297 
## F-statistic: 2.442 on 17 and 2913 DF,  p-value: 0.0008381
## 
## 
## Call:
## lm(formula = return_price ~ ., data = obj)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9555 -0.1212 -0.0129  0.0937  4.0153 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.982051   0.004686 209.565  < 2e-16 ***
## cashnequsd_n     -0.005774   0.008141  -0.709 0.478169    
## de_n             -0.012214   0.006314  -1.935 0.053143 .  
## ebitda_n         -0.025171   0.024123  -1.043 0.296823    
## epsusd_n          0.017216   0.005181   3.323 0.000902 ***
## equityusd_n       0.001750   0.009438   0.185 0.852902    
## fcf_n             0.009459   0.010772   0.878 0.379928    
## revenueusd_n     -0.002536   0.009133  -0.278 0.781296    
## gp_n              0.003708   0.009794   0.379 0.705010    
## liabilities_n     0.006911   0.011602   0.596 0.551455    
## ncff_n            0.003741   0.006748   0.554 0.579282    
## ncfi_n            0.006779   0.007311   0.927 0.353842    
## ncfo_n            0.002547   0.015315   0.166 0.867909    
## netinc_n          0.020285   0.016910   1.200 0.230409    
## pb_n              0.029101   0.006137   4.742 2.22e-06 ***
## pe1_n             0.002635   0.004996   0.528 0.597868    
## sharesbas_n       0.002990   0.007322   0.408 0.683011    
## workingcapital_n -0.016146   0.008263  -1.954 0.050785 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2519 on 2924 degrees of freedom
## Multiple R-squared:  0.01799,    Adjusted R-squared:  0.01228 
## F-statistic: 3.151 on 17 and 2924 DF,  p-value: 1.318e-05
## 
## 
## Call:
## lm(formula = return_price ~ ., data = obj)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8527 -0.1156 -0.0197  0.0795  6.1698 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       1.022617   0.005299 192.999  < 2e-16 ***
## cashnequsd_n     -0.007348   0.009727  -0.755    0.450    
## de_n             -0.009464   0.006908  -1.370    0.171    
## ebitda_n          0.019480   0.026685   0.730    0.465    
## epsusd_n          0.025992   0.006210   4.186 2.93e-05 ***
## equityusd_n      -0.005062   0.010793  -0.469    0.639    
## fcf_n             0.008357   0.011967   0.698    0.485    
## revenueusd_n      0.013492   0.010286   1.312    0.190    
## gp_n              0.001523   0.010639   0.143    0.886    
## liabilities_n     0.006293   0.013217   0.476    0.634    
## ncff_n            0.001830   0.007971   0.230    0.818    
## ncfi_n            0.009576   0.009357   1.023    0.306    
## ncfo_n           -0.001971   0.016146  -0.122    0.903    
## netinc_n         -0.021116   0.018935  -1.115    0.265    
## pb_n              0.032653   0.007389   4.419 1.03e-05 ***
## pe1_n             0.001781   0.005648   0.315    0.753    
## sharesbas_n      -0.006783   0.008113  -0.836    0.403    
## workingcapital_n  0.004098   0.009168   0.447    0.655    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2833 on 2878 degrees of freedom
## Multiple R-squared:  0.0197, Adjusted R-squared:  0.01391 
## F-statistic: 3.402 on 17 and 2878 DF,  p-value: 2.792e-06
## 
## 
## Call:
## lm(formula = return_price ~ ., data = obj)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0885 -0.1503 -0.0320  0.1001  5.7394 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       1.1326587  0.0062233 182.004  < 2e-16 ***
## cashnequsd_n      0.0074541  0.0110192   0.676 0.498800    
## de_n             -0.0015371  0.0074738  -0.206 0.837070    
## ebitda_n         -0.0004743  0.0218394  -0.022 0.982676    
## epsusd_n          0.0126662  0.0065592   1.931 0.053571 .  
## equityusd_n      -0.0090622  0.0126587  -0.716 0.474119    
## fcf_n             0.0100693  0.0106710   0.944 0.345444    
## revenueusd_n      0.0071351  0.0125762   0.567 0.570521    
## gp_n             -0.0134158  0.0134931  -0.994 0.320171    
## liabilities_n     0.0045670  0.0143595   0.318 0.750469    
## ncff_n            0.0036882  0.0091375   0.404 0.686512    
## ncfi_n            0.0041310  0.0096371   0.429 0.668208    
## ncfo_n            0.0031214  0.0149802   0.208 0.834955    
## netinc_n         -0.0166468  0.0147950  -1.125 0.260611    
## pb_n              0.0282163  0.0072536   3.890 0.000102 ***
## pe1_n             0.0028903  0.0066017   0.438 0.661550    
## sharesbas_n       0.0011165  0.0093887   0.119 0.905350    
## workingcapital_n  0.0021682  0.0109243   0.198 0.842688    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3342 on 2952 degrees of freedom
## Multiple R-squared:  0.01084,    Adjusted R-squared:  0.005139 
## F-statistic: 1.902 on 17 and 2952 DF,  p-value: 0.01403
## 
## 
## Call:
## lm(formula = return_price ~ ., data = obj)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.00894 -0.10829 -0.01991  0.07728  2.71410 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       1.0473682  0.0041885 250.059  < 2e-16 ***
## cashnequsd_n      0.0020662  0.0073209   0.282   0.7778    
## de_n              0.0044940  0.0050904   0.883   0.3774    
## ebitda_n          0.0035653  0.0214684   0.166   0.8681    
## epsusd_n          0.0219432  0.0050417   4.352 1.39e-05 ***
## equityusd_n      -0.0166247  0.0082982  -2.003   0.0452 *  
## fcf_n             0.0043540  0.0105216   0.414   0.6790    
## revenueusd_n     -0.0073925  0.0082021  -0.901   0.3675    
## gp_n              0.0117395  0.0091282   1.286   0.1985    
## liabilities_n     0.0085783  0.0099462   0.862   0.3885    
## ncff_n            0.0050784  0.0064014   0.793   0.4277    
## ncfi_n            0.0061016  0.0075657   0.806   0.4200    
## ncfo_n            0.0010323  0.0135273   0.076   0.9392    
## netinc_n         -0.0046105  0.0148737  -0.310   0.7566    
## pb_n              0.0041753  0.0048529   0.860   0.3897    
## pe1_n            -0.0007045  0.0041587  -0.169   0.8655    
## sharesbas_n       0.0081148  0.0062854   1.291   0.1968    
## workingcapital_n -0.0032877  0.0068956  -0.477   0.6336    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2239 on 2913 degrees of freedom
## Multiple R-squared:  0.0131, Adjusted R-squared:  0.007343 
## F-statistic: 2.275 on 17 and 2913 DF,  p-value: 0.002085
## 
## 
## Call:
## lm(formula = return_price ~ ., data = obj)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.06313 -0.12764 -0.02717  0.09270  2.34458 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       1.099e+00  4.841e-03 226.964  < 2e-16 ***
## cashnequsd_n      7.019e-03  8.397e-03   0.836   0.4033    
## de_n             -6.093e-03  5.835e-03  -1.044   0.2965    
## ebitda_n         -1.007e-02  2.277e-02  -0.442   0.6583    
## epsusd_n          2.581e-02  5.797e-03   4.452 8.83e-06 ***
## equityusd_n      -2.357e-02  9.963e-03  -2.366   0.0180 *  
## fcf_n             1.779e-03  1.019e-02   0.175   0.8615    
## revenueusd_n      9.467e-03  9.298e-03   1.018   0.3087    
## gp_n              9.054e-03  1.039e-02   0.871   0.3836    
## liabilities_n    -2.865e-03  1.104e-02  -0.259   0.7953    
## ncff_n            8.489e-03  6.536e-03   1.299   0.1941    
## ncfi_n            2.998e-03  7.395e-03   0.405   0.6853    
## ncfo_n            2.330e-04  1.464e-02   0.016   0.9873    
## netinc_n         -8.919e-03  1.633e-02  -0.546   0.5849    
## pb_n              1.303e-02  5.478e-03   2.378   0.0175 *  
## pe1_n            -3.913e-05  4.484e-03  -0.009   0.9930    
## sharesbas_n       6.324e-03  7.407e-03   0.854   0.3933    
## workingcapital_n -1.227e-03  8.338e-03  -0.147   0.8830    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2614 on 2912 degrees of freedom
## Multiple R-squared:  0.01445,    Adjusted R-squared:  0.008699 
## F-statistic: 2.512 on 17 and 2912 DF,  p-value: 0.0005675
## 
## 
## Call:
## lm(formula = return_price ~ ., data = obj)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.024 -0.148 -0.039  0.076 38.892 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       1.0779549  0.0146846  73.407   <2e-16 ***
## cashnequsd_n     -0.0001760  0.0241166  -0.007    0.994    
## de_n              0.0060271  0.0180973   0.333    0.739    
## ebitda_n          0.0102945  0.0630789   0.163    0.870    
## epsusd_n          0.0197100  0.0186922   1.054    0.292    
## equityusd_n      -0.0090325  0.0297634  -0.303    0.762    
## fcf_n             0.0053644  0.0309037   0.174    0.862    
## revenueusd_n     -0.0078120  0.0277820  -0.281    0.779    
## gp_n              0.0001712  0.0300626   0.006    0.995    
## liabilities_n    -0.0018660  0.0341445  -0.055    0.956    
## ncff_n            0.0065067  0.0217269   0.299    0.765    
## ncfi_n            0.0012456  0.0227850   0.055    0.956    
## ncfo_n            0.0042575  0.0431728   0.099    0.921    
## netinc_n         -0.0058064  0.0462327  -0.126    0.900    
## pb_n              0.0213426  0.0172070   1.240    0.215    
## pe1_n             0.0012915  0.0147944   0.087    0.930    
## sharesbas_n      -0.0128522  0.0216726  -0.593    0.553    
## workingcapital_n -0.0030277  0.0246248  -0.123    0.902    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7877 on 2881 degrees of freedom
## Multiple R-squared:  0.002126,   Adjusted R-squared:  -0.003763 
## F-statistic: 0.361 on 17 and 2881 DF,  p-value: 0.9921
## 
## 
## Call:
## lm(formula = return_price ~ ., data = obj)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.1789 -0.1740 -0.0577  0.0861  9.7723 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       1.1244176  0.0080601 139.505  < 2e-16 ***
## cashnequsd_n      0.0101455  0.0127910   0.793   0.4277    
## de_n             -0.0463170  0.0093210  -4.969 7.11e-07 ***
## ebitda_n         -0.0228807  0.0271396  -0.843   0.3993    
## epsusd_n         -0.0002878  0.0090627  -0.032   0.9747    
## equityusd_n      -0.0297569  0.0158895  -1.873   0.0612 .  
## fcf_n             0.0237160  0.0151671   1.564   0.1180    
## revenueusd_n     -0.0159993  0.0141274  -1.133   0.2575    
## gp_n             -0.0206879  0.0175935  -1.176   0.2397    
## liabilities_n     0.0313528  0.0176401   1.777   0.0756 .  
## ncff_n            0.0028819  0.0114682   0.251   0.8016    
## ncfi_n            0.0021917  0.0124281   0.176   0.8600    
## ncfo_n           -0.0174223  0.0209238  -0.833   0.4051    
## netinc_n          0.0116724  0.0190718   0.612   0.5406    
## pb_n              0.0725291  0.0084498   8.584  < 2e-16 ***
## pe1_n            -0.0099871  0.0068224  -1.464   0.1433    
## sharesbas_n       0.0150355  0.0119903   1.254   0.2099    
## workingcapital_n -0.0018128  0.0130437  -0.139   0.8895    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4343 on 2949 degrees of freedom
## Multiple R-squared:  0.03533,    Adjusted R-squared:  0.02977 
## F-statistic: 6.352 on 17 and 2949 DF,  p-value: 5.891e-15
## 
## 
## Call:
## lm(formula = return_price ~ ., data = obj)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8593 -0.1027 -0.0067  0.0775  4.1164 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.9657672  0.0044754 215.794  < 2e-16 ***
## cashnequsd_n     -0.0062570  0.0071805  -0.871   0.3836    
## de_n             -0.0014130  0.0055192  -0.256   0.7980    
## ebitda_n         -0.0015179  0.0209664  -0.072   0.9423    
## epsusd_n          0.0363460  0.0057450   6.327 2.89e-10 ***
## equityusd_n      -0.0016980  0.0085154  -0.199   0.8420    
## fcf_n            -0.0154614  0.0089293  -1.732   0.0835 .  
## revenueusd_n      0.0159357  0.0079413   2.007   0.0449 *  
## gp_n             -0.0066066  0.0107065  -0.617   0.5372    
## liabilities_n     0.0091190  0.0104270   0.875   0.3819    
## ncff_n            0.0010090  0.0063998   0.158   0.8747    
## ncfi_n           -0.0009621  0.0073953  -0.130   0.8965    
## ncfo_n            0.0256372  0.0119958   2.137   0.0327 *  
## netinc_n         -0.0042161  0.0158853  -0.265   0.7907    
## pb_n              0.0008507  0.0053369   0.159   0.8734    
## pe1_n             0.0073280  0.0039621   1.850   0.0645 .  
## sharesbas_n      -0.0024332  0.0066236  -0.367   0.7134    
## workingcapital_n  0.0038923  0.0072523   0.537   0.5915    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.239 on 2906 degrees of freedom
## Multiple R-squared:  0.03725,    Adjusted R-squared:  0.03162 
## F-statistic: 6.614 on 17 and 2906 DF,  p-value: 9.298e-16
## 
## 
## Call:
## lm(formula = return_price ~ ., data = obj)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.97444 -0.10145 -0.01377  0.08218  2.48002 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       1.0100803  0.0038945 259.359  < 2e-16 ***
## cashnequsd_n      0.0118107  0.0062035   1.904    0.057 .  
## de_n             -0.0025228  0.0045515  -0.554    0.579    
## ebitda_n         -0.0174550  0.0180692  -0.966    0.334    
## epsusd_n          0.0266494  0.0052449   5.081 3.99e-07 ***
## equityusd_n      -0.0088718  0.0074246  -1.195    0.232    
## fcf_n            -0.0008175  0.0080334  -0.102    0.919    
## revenueusd_n      0.0003193  0.0067595   0.047    0.962    
## gp_n             -0.0023617  0.0091825  -0.257    0.797    
## liabilities_n     0.0049472  0.0090634   0.546    0.585    
## ncff_n            0.0038283  0.0059145   0.647    0.518    
## ncfi_n            0.0031718  0.0065314   0.486    0.627    
## ncfo_n            0.0179212  0.0112461   1.594    0.111    
## netinc_n         -0.0018691  0.0127154  -0.147    0.883    
## pb_n              0.0057576  0.0047160   1.221    0.222    
## pe1_n            -0.0006006  0.0036653  -0.164    0.870    
## sharesbas_n       0.0066495  0.0059041   1.126    0.260    
## workingcapital_n -0.0023348  0.0060591  -0.385    0.700    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2105 on 2919 degrees of freedom
## Multiple R-squared:  0.01439,    Adjusted R-squared:  0.008646 
## F-statistic: 2.506 on 17 and 2919 DF,  p-value: 0.0005855
## 
## 
## Call:
## lm(formula = return_price ~ ., data = obj)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9287 -0.1288 -0.0059  0.1081  9.3448 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       9.878e-01  5.743e-03 172.003  < 2e-16 ***
## cashnequsd_n      8.820e-03  8.978e-03   0.982 0.325990    
## de_n             -7.630e-03  6.549e-03  -1.165 0.244084    
## ebitda_n         -4.369e-02  2.207e-02  -1.980 0.047778 *  
## epsusd_n          3.159e-02  7.733e-03   4.085 4.53e-05 ***
## equityusd_n       7.666e-03  1.071e-02   0.716 0.474017    
## fcf_n             2.413e-02  1.047e-02   2.304 0.021266 *  
## revenueusd_n     -5.240e-07  9.758e-03   0.000 0.999957    
## gp_n              3.132e-02  1.252e-02   2.502 0.012416 *  
## liabilities_n     1.179e-02  1.236e-02   0.954 0.340142    
## ncff_n            6.082e-03  7.400e-03   0.822 0.411192    
## ncfi_n            2.127e-03  8.770e-03   0.243 0.808354    
## ncfo_n           -1.660e-02  1.636e-02  -1.014 0.310445    
## netinc_n          4.356e-03  1.571e-02   0.277 0.781664    
## pb_n              2.339e-02  6.337e-03   3.690 0.000228 ***
## pe1_n             1.062e-03  5.858e-03   0.181 0.856109    
## sharesbas_n      -1.677e-02  8.632e-03  -1.942 0.052188 .  
## workingcapital_n -4.168e-03  9.245e-03  -0.451 0.652169    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3084 on 2892 degrees of freedom
## Multiple R-squared:  0.02131,    Adjusted R-squared:  0.01556 
## F-statistic: 3.704 on 17 and 2892 DF,  p-value: 4.103e-07