data(mtcars)
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
As we see from the structure, some variables that are clearly have specific values and should be changed to factor variables
mtcars$cyl <- factor(mtcars$cyl)
mtcars$am <- factor(mtcars$am)
mtcars$vs <- factor(mtcars$vs)
mtcars$gear <- factor(mtcars$gear)
mtcars$carb <- factor(mtcars$carb)
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : Factor w/ 3 levels "4","6","8": 2 2 1 2 3 2 3 1 1 2 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : Factor w/ 2 levels "0","1": 1 1 2 2 1 2 1 2 2 2 ...
## $ am : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
## $ gear: Factor w/ 3 levels "3","4","5": 2 2 2 1 1 1 1 2 2 2 ...
## $ carb: Factor w/ 6 levels "1","2","3","4",..: 4 4 1 1 2 1 4 2 2 4 ...
all_Variables <- lm(mpg ~ . , data=mtcars)
summary(all_Variables)
##
## Call:
## lm(formula = mpg ~ ., data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5087 -1.3584 -0.0948 0.7745 4.6251
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.87913 20.06582 1.190 0.2525
## cyl6 -2.64870 3.04089 -0.871 0.3975
## cyl8 -0.33616 7.15954 -0.047 0.9632
## disp 0.03555 0.03190 1.114 0.2827
## hp -0.07051 0.03943 -1.788 0.0939 .
## drat 1.18283 2.48348 0.476 0.6407
## wt -4.52978 2.53875 -1.784 0.0946 .
## qsec 0.36784 0.93540 0.393 0.6997
## vs1 1.93085 2.87126 0.672 0.5115
## am1 1.21212 3.21355 0.377 0.7113
## gear4 1.11435 3.79952 0.293 0.7733
## gear5 2.52840 3.73636 0.677 0.5089
## carb2 -0.97935 2.31797 -0.423 0.6787
## carb3 2.99964 4.29355 0.699 0.4955
## carb4 1.09142 4.44962 0.245 0.8096
## carb6 4.47757 6.38406 0.701 0.4938
## carb8 7.25041 8.36057 0.867 0.3995
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.833 on 15 degrees of freedom
## Multiple R-squared: 0.8931, Adjusted R-squared: 0.779
## F-statistic: 7.83 on 16 and 15 DF, p-value: 0.000124
am_only <- lm(mpg ~ factor(am) , data=mtcars)
summary(am_only)
##
## Call:
## lm(formula = mpg ~ factor(am), data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.3923 -3.0923 -0.2974 3.2439 9.5077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.147 1.125 15.247 1.13e-15 ***
## factor(am)1 7.245 1.764 4.106 0.000285 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
from the models above R^2 of all_Variables is much higher than am_only, which means that we included variable that we should’t have to include. comparing the AIC values of diffrent models with diffrent set of predictors am +hp+wt+cyl is the best model.
best_mod <- lm(mpg ~ am +hp+wt+cyl , data=mtcars)
summary(best_mod)
##
## Call:
## lm(formula = mpg ~ am + hp + wt + cyl, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9387 -1.2560 -0.4013 1.1253 5.0513
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.70832 2.60489 12.940 7.73e-13 ***
## am1 1.80921 1.39630 1.296 0.20646
## hp -0.03211 0.01369 -2.345 0.02693 *
## wt -2.49683 0.88559 -2.819 0.00908 **
## cyl6 -3.03134 1.40728 -2.154 0.04068 *
## cyl8 -2.16368 2.28425 -0.947 0.35225
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.41 on 26 degrees of freedom
## Multiple R-squared: 0.8659, Adjusted R-squared: 0.8401
## F-statistic: 33.57 on 5 and 26 DF, p-value: 1.506e-10
Comparing the models
anova(best_mod, am_only)
## Analysis of Variance Table
##
## Model 1: mpg ~ am + hp + wt + cyl
## Model 2: mpg ~ factor(am)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 26 151.03
## 2 30 720.90 -4 -569.87 24.527 1.688e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Looking at this result, the p-value obtained is highly significant, which is indication the adjustment with hp+ wt+ cyl is essential to the model.
Taking a look into the Regression Model plotting
par(mfrow=c(2,2))
plot(best_mod)
1- Residuals vs Fitted: We find equally spread residuals around a horizontal line without distinct patterns, this is indication that the model is linear.
2- Normal Q-Q: This plot shows that the residuals are normally distributed.
3- Scale-Location: We see a horizontal line with equally (randomly) spread points.
4- Residuals vs Leverage: We don’t see any points byond the cook’s distance.
t.test(mpg ~ am, data = mtcars)
##
## Welch Two Sample t-test
##
## data: mpg by am
## t = -3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.280194 -3.209684
## sample estimates:
## mean in group 0 mean in group 1
## 17.14737 24.39231
1- The relation between the mpg and am is linear after adjustment with wt, hp & cyl.
2- The mpg decreases with every 1 ton increase in the car weight (wt).
3- The mpg decreases with increasing the cylinders.
4- The mpg decreases with the increase of the hp.
5- The mpg is better with the manual cars than the automatic cars.