Creating initial variables.

setwd("~/Documents/Dropbox/Research/Bernd")
p<-read.csv ("manipulating_TIF.csv", header=T, sep=",")

#Including only people who reported their attitudes twice (pre- and post-facts)
p<-subset(p, Rcars1_1 != "NA" | terror_concern_1_1 != "NA" | meat1_1 != "NA")

#Cars 1 pre-fact attitudes; cars 2 is post-fact attitudes. Both are the average of willingness to ride in and willingness to buy driverless cars. 
p$cars1<-(p$Rcars1_1+p$Rcars1_2)/2
p$cars2<-(p$Rcars2_1+p$Rcars2_2)/2

#Attitudes are more positive post- vs. pre-fact. 
t.test(p$cars1, p$cars2)
## 
##  Welch Two Sample t-test
## 
## data:  p$cars1 and p$cars2
## t = -3.0076, df = 901.74, p-value = 0.002707
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -10.974271  -2.307335
## sample estimates:
## mean of x mean of y 
##  48.50110  55.14191
#Creating the "attitude change" variable (carsdiff). If this is positive, it means attitudes towards the car improved after learning the facts. If negative, attitudes worsened.
p$carsdiff<-(p$cars2 - p$cars1)

summary(p$carsdiff)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
## -49.000   0.000   2.000   6.606  10.500  99.000     230
#Same process for terror and meat variables. 
p$terror1<-(p$terror_concern_1_1+p$terror_die_1_1)/2
p$terror2<-(p$terror_concern_2_1+p$terror_die_2_1)/2

#People are less concerned about terrorism post-facts. 
t.test(p$terror1, p$terror2)
## 
##  Welch Two Sample t-test
## 
## data:  p$terror1 and p$terror2
## t = 8.5065, df = 906.52, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   9.042574 14.466479
## sample estimates:
## mean of x mean of y 
##  35.80947  24.05495
p$terrordiff<-(p$terror1 - p$terror2)
summary(p$terrordiff)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##  -50.00    1.50    7.75   11.98   19.12   74.00     229
#People are more positive about lab grown meat post-facts. 
t.test(p$meat1_1, p$meat2_1)
## 
##  Welch Two Sample t-test
## 
## data:  p$meat1_1 and p$meat2_1
## t = -3.5491, df = 896.22, p-value = 0.0004066
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -12.048514  -3.468046
## sample estimates:
## mean of x mean of y 
##  51.73392  59.49220
p$meatdiff<-(p$meat2_1 - p$meat1_1)
summary(p$meatdiff)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
## -50.000   0.000   2.000   7.795  11.250 100.000     233
#Creating subsets of the data based on manipulated condition (high or low trust in feelings), in order to do t-tests to check if attitude change varied by condition. Also excluding people who failed the basic attention checks for the manipulations. 
hiT<-subset(p, hiTIF==1)
hiT<-subset(p, ch1==4 & ch2==4 & ch3==4)
loT<-subset(p, loTIF==1)
loT<-subset(p, ch4==1 & ch5==1&ch6==2)

t.test(hiT$carsdiff, loT$carsdiff)
## 
##  Welch Two Sample t-test
## 
## data:  hiT$carsdiff and loT$carsdiff
## t = 1.2761, df = 385.14, p-value = 0.2027
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.8971882  4.2155152
## sample estimates:
## mean of x mean of y 
##  7.745370  6.086207
t.test(hiT$meatdiff, loT$meatdiff)
## 
##  Welch Two Sample t-test
## 
## data:  hiT$meatdiff and loT$meatdiff
## t = 0.67237, df = 403.29, p-value = 0.5017
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.136438  4.357528
## sample estimates:
## mean of x mean of y 
##  8.535545  7.425000
t.test(hiT$terrordiff, loT$terrordiff)
## 
##  Welch Two Sample t-test
## 
## data:  hiT$terrordiff and loT$terrordiff
## t = -1.0325, df = 414.57, p-value = 0.3024
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -4.319796  1.344564
## sample estimates:
## mean of x mean of y 
##  11.24884  12.73645
#The manipulation didn't affect attitude change, nor did it affect attitudes pre- or post-facts.
t.test(hiT$terror2, loT$terror2)
## 
##  Welch Two Sample t-test
## 
## data:  hiT$terror2 and loT$terror2
## t = 1.3554, df = 417.99, p-value = 0.176
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.200360  6.532604
## sample estimates:
## mean of x mean of y 
##  24.55093  21.88480
t.test(hiT$cars2, loT$cars2)
## 
##  Welch Two Sample t-test
## 
## data:  hiT$cars2 and loT$cars2
## t = 0.38344, df = 416.91, p-value = 0.7016
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.177131  7.686413
## sample estimates:
## mean of x mean of y 
##  55.44676  54.19212
t.test(hiT$meat2, loT$meat2)
## 
##  Welch Two Sample t-test
## 
## data:  hiT$meat2 and loT$meat2
## t = -0.15469, df = 406.84, p-value = 0.8771
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -6.771223  5.783299
## sample estimates:
## mean of x mean of y 
##  59.81604  60.31000
t.test(hiT$terror1, loT$terror1)
## 
##  Welch Two Sample t-test
## 
## data:  hiT$terror1 and loT$terror1
## t = 0.61454, df = 408.53, p-value = 0.5392
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.755917  5.262666
## sample estimates:
## mean of x mean of y 
##  35.65581  34.40244
t.test(hiT$cars1, loT$cars1)
## 
##  Welch Two Sample t-test
## 
## data:  hiT$cars1 and loT$cars1
## t = -0.14135, df = 418.92, p-value = 0.8877
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -6.980528  6.043935
## sample estimates:
## mean of x mean of y 
##  47.63761  48.10591
t.test(hiT$meat1_1, loT$meat1_1)
## 
##  Welch Two Sample t-test
## 
## data:  hiT$meat1_1 and loT$meat1_1
## t = -0.40678, df = 408.08, p-value = 0.6844
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -7.926594  5.208525
## sample estimates:
## mean of x mean of y 
##  51.51659  52.87562
#Reliance on feelings does correlate with attitude change for all 3 targets. More reliance on feelings, less attitude change. Even stronger correlations between initial attitudes and reliance on feelings. 
p$carfeel<-(p$carsmod_1 + (102 - p$carsmod_2))/2
cor.test(p$carfeel, p$carsdiff)
## 
##  Pearson's product-moment correlation
## 
## data:  p$carfeel and p$carsdiff
## t = -1.889, df = 446, p-value = 0.05954
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.180247739  0.003583656
## sample estimates:
##         cor 
## -0.08909069
cor.test(p$carfeel, p$cars1)
## 
##  Pearson's product-moment correlation
## 
## data:  p$carfeel and p$cars1
## t = -12.998, df = 448, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.5873172 -0.4527504
## sample estimates:
##        cor 
## -0.5232884
p$meatfeel<-(p$meatmod_1+(102-p$meatmod_2))/2
cor.test(p$meatfeel, p$meatdiff)
## 
##  Pearson's product-moment correlation
## 
## data:  p$meatfeel and p$meatdiff
## t = -1.7129, df = 443, p-value = 0.08743
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.17276768  0.01193329
## sample estimates:
##         cor 
## -0.08111352
cor.test(p$meatfeel, p$meat1_1)
## 
##  Pearson's product-moment correlation
## 
## data:  p$meatfeel and p$meat1_1
## t = -11.984, df = 446, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.5605501 -0.4200992
## sample estimates:
##        cor 
## -0.4935356
p$terrorfeel<-(p$terrormod_1+(102-p$terrormod_2))/2
cor.test(p$terrorfeel, p$terrordiff)
## 
##  Pearson's product-moment correlation
## 
## data:  p$terrorfeel and p$terrordiff
## t = -3.1369, df = 444, p-value = 0.001821
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.23686211 -0.05514967
## sample estimates:
##        cor 
## -0.1472481
cor.test(p$terrorfeel, p$terror1)
## 
##  Pearson's product-moment correlation
## 
## data:  p$terrorfeel and p$terror1
## t = 6.3338, df = 446, p-value = 5.848e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1999488 0.3700678
## sample estimates:
##       cor 
## 0.2872721

Are there variables that interact with the manipulation?

p$manip[p$loTIF==1]<-0
p$manip[p$hiTIF==1]<-1

#Does the manipulation interact with people's "trait" tendency to rely on their feelings when making decisions (either in general or with regards to new technologies)?
p$techmode<-(p$techmode_1 + (102-p$techmode_2))/2
p$generalmode<-(p$generalmode_1 + (102-p$generalmode_2))/2

#Marginal interactions for reliance on feelings "in general"; significant interactions for reliance on feelings for tech. 
summary(lm(terrordiff ~ manip * generalmode, data=p))
## 
## Call:
## lm(formula = terrordiff ~ manip * generalmode, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -59.883  -9.680  -3.690   7.356  60.363 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        9.80778    2.44108   4.018 6.89e-05 ***
## manip             -4.98293    3.70604  -1.345    0.179    
## generalmode        0.07158    0.05392   1.327    0.185    
## manip:generalmode  0.06894    0.07918   0.871    0.384    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.61 on 448 degrees of freedom
##   (229 observations deleted due to missingness)
## Multiple R-squared:  0.01978,    Adjusted R-squared:  0.01322 
## F-statistic: 3.014 on 3 and 448 DF,  p-value: 0.0298
summary(lm(carsdiff ~ manip * generalmode, data=p))
## 
## Call:
## lm(formula = carsdiff ~ manip * generalmode, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -54.294  -6.669  -4.227   3.301  90.523 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)        5.91470    2.56019   2.310   0.0213 *
## manip             -4.07110    3.73601  -1.090   0.2764  
## generalmode       -0.01218    0.05667  -0.215   0.8299  
## manip:generalmode  0.14353    0.07978   1.799   0.0727 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.37 on 447 degrees of freedom
##   (230 observations deleted due to missingness)
## Multiple R-squared:  0.01901,    Adjusted R-squared:  0.01242 
## F-statistic: 2.887 on 3 and 447 DF,  p-value: 0.03532
summary(lm(meatdiff ~ manip * generalmode, data=p))
## 
## Call:
## lm(formula = meatdiff ~ manip * generalmode, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -59.398  -7.894  -4.876   2.952  94.132 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)        8.23812    3.36510   2.448   0.0147 *
## manip             -7.38579    5.05636  -1.461   0.1448  
## generalmode       -0.02014    0.07350  -0.274   0.7842  
## manip:generalmode  0.18193    0.10755   1.691   0.0914 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.13 on 444 degrees of freedom
##   (233 observations deleted due to missingness)
## Multiple R-squared:  0.01017,    Adjusted R-squared:  0.003477 
## F-statistic:  1.52 on 3 and 444 DF,  p-value: 0.2086
summary(lm(terrordiff ~ manip * polimode_1, data=p))
## 
## Call:
## lm(formula = terrordiff ~ manip * polimode_1, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -60.961  -9.704  -4.082   7.959  58.971 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       9.69345    2.01047   4.821 1.96e-06 ***
## manip            -0.98749    3.11021  -0.317    0.751    
## polimode_1        0.06204    0.03536   1.754    0.080 .  
## manip:polimode_1 -0.01693    0.05326  -0.318    0.751    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.67 on 448 degrees of freedom
##   (229 observations deleted due to missingness)
## Multiple R-squared:  0.01269,    Adjusted R-squared:  0.006079 
## F-statistic:  1.92 on 3 and 448 DF,  p-value: 0.1256
summary(lm(carsdiff ~ manip * techmode, data=p))
## 
## Call:
## lm(formula = carsdiff ~ manip * techmode, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -53.370  -6.988  -4.142   3.574  90.422 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     7.99103    2.16541   3.690 0.000252 ***
## manip          -4.32407    3.20706  -1.348 0.178246    
## techmode       -0.07100    0.05330  -1.332 0.183536    
## manip:techmode  0.16730    0.07334   2.281 0.023016 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.37 on 447 degrees of freedom
##   (230 observations deleted due to missingness)
## Multiple R-squared:  0.01881,    Adjusted R-squared:  0.01222 
## F-statistic: 2.856 on 3 and 447 DF,  p-value: 0.03679
summary(lm(meatdiff ~ manip * techmode, data=p))
## 
## Call:
## lm(formula = meatdiff ~ manip * techmode, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -55.537  -8.642  -4.162   3.895  90.851 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     11.99445    2.88482   4.158 3.86e-05 ***
## manip          -10.68617    4.24326  -2.518  0.01214 *  
## techmode        -0.12661    0.07191  -1.761  0.07898 .  
## manip:techmode   0.29343    0.09984   2.939  0.00346 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.04 on 444 degrees of freedom
##   (233 observations deleted due to missingness)
## Multiple R-squared:  0.02018,    Adjusted R-squared:  0.01356 
## F-statistic: 3.048 on 3 and 444 DF,  p-value: 0.02851
#To break down the interactions, we can look at people who are above and below the mid point of the trait measure. 
hiF<-subset(p, techmode>=50)
loF<-subset(p, techmode<50)

#People who already rely on their feelings a lot change their attitudes more in the "relying on feelings is good" condition than in the "relying on feelings is bad" condition. I guess because they aren't basing their attitudes on the facts we provide them but rather on their feelings?
summary(lm(carsdiff~manip, data=hiF))
## 
## Call:
## lm(formula = carsdiff ~ manip, data = hiF)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -51.359  -7.702  -2.359   3.383  91.298 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    2.359      2.163   1.091   0.2771  
## manip          5.343      2.870   1.861   0.0647 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.3 on 146 degrees of freedom
##   (64 observations deleted due to missingness)
## Multiple R-squared:  0.02318,    Adjusted R-squared:  0.01649 
## F-statistic: 3.465 on 1 and 146 DF,  p-value: 0.0647
summary(lm(carsdiff~manip, data=loF))
## 
## Call:
## lm(formula = carsdiff ~ manip, data = loF)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.363  -7.239  -4.615   3.385  84.637 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    6.615      1.005   6.583 2.05e-10 ***
## manip          1.248      1.468   0.850    0.396    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.75 on 301 degrees of freedom
##   (166 observations deleted due to missingness)
## Multiple R-squared:  0.002395,   Adjusted R-squared:  -0.0009196 
## F-statistic: 0.7225 on 1 and 301 DF,  p-value: 0.396
summary(lm(meatdiff~manip, data=hiF))
## 
## Call:
## lm(formula = meatdiff ~ manip, data = hiF)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -56.30 -10.95  -6.30   3.70  88.05 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    6.300      2.582    2.44    0.016 *
## manip          5.647      3.464    1.63    0.105  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20 on 133 degrees of freedom
##   (77 observations deleted due to missingness)
## Multiple R-squared:  0.01959,    Adjusted R-squared:  0.01222 
## F-statistic: 2.658 on 1 and 133 DF,  p-value: 0.1054
summary(lm(meatdiff~manip, data=loF))
## 
## Call:
## lm(formula = meatdiff ~ manip, data = loF)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -55.324  -7.770  -5.324   4.676  93.676 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    7.770      1.343   5.785 1.77e-08 ***
## manip         -1.445      1.953  -0.740     0.46    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.25 on 311 degrees of freedom
##   (156 observations deleted due to missingness)
## Multiple R-squared:  0.001758,   Adjusted R-squared:  -0.001452 
## F-statistic: 0.5476 on 1 and 311 DF,  p-value: 0.4599

Let’s collapse all 3 targets into 1.

all <- reshape(p, 
  varying = c("carsdiff", "meatdiff", "terrordiff"), 
  v.names = "change",
  timevar = "target", 
  times = c("car", "meat", "terror"), 
  direction = "long")

#Creating dummy variables. 
all$meat[all$target=="meat"]<-1
all$meat[all$target!="meat"]<-0
all$car[all$target=="car"]<-1
all$car[all$target!="car"]<-0
all$terror[all$target=="terror"]<-1
all$terror[all$target!="terror"]<-0

#Using just manipulation to predict attitude change: 
summary(lm(change ~ manip, data=all))
## 
## Call:
## lm(formula = change ~ manip, data = all)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -59.051  -8.547  -4.551   4.953  90.949 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   8.5471     0.6149  13.900   <2e-16 ***
## manip         0.5042     0.8719   0.578    0.563    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16.02 on 1349 degrees of freedom
##   (692 observations deleted due to missingness)
## Multiple R-squared:  0.0002479,  Adjusted R-squared:  -0.0004932 
## F-statistic: 0.3345 on 1 and 1349 DF,  p-value: 0.5631
#Using manipulation and the dummy variables for targets. 
summary(lm(change ~ manip + meat + car + terror, data=all))
## 
## Call:
## lm(formula = change ~ manip + meat + car + terror, data = all)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -62.249  -8.062  -4.839   4.938  92.128 
## 
## Coefficients: (1 not defined because of singularities)
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  11.7161     0.8593  13.634  < 2e-16 ***
## manip         0.5328     0.8634   0.617    0.537    
## meat         -4.1867     1.0578  -3.958 7.96e-05 ***
## car          -5.3767     1.0561  -5.091 4.06e-07 ***
## terror            NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.87 on 1347 degrees of freedom
##   (692 observations deleted due to missingness)
## Multiple R-squared:  0.02103,    Adjusted R-squared:  0.01885 
## F-statistic: 9.648 on 3 and 1347 DF,  p-value: 2.657e-06
#Using manipulation, dummies, and their interactions. 
summary(lm(change ~ manip + meat + car + terror + manip*meat + manip*car + manip*terror, data=all))
## 
## Call:
## lm(formula = change ~ manip + meat + car + terror + manip * meat + 
##     manip * car + manip * terror, data = all)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -61.152  -8.152  -4.904   4.785  91.785 
## 
## Coefficients: (2 not defined because of singularities)
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    12.784      1.048  12.200  < 2e-16 ***
## manip          -1.631      1.492  -1.094 0.274351    
## meat           -5.406      1.488  -3.632 0.000292 ***
## car            -7.379      1.488  -4.958 8.04e-07 ***
## terror             NA         NA      NA       NA    
## manip:meat      2.469      2.114   1.168 0.243157    
## manip:car       4.030      2.111   1.909 0.056448 .  
## manip:terror       NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.86 on 1345 degrees of freedom
##   (692 observations deleted due to missingness)
## Multiple R-squared:  0.02373,    Adjusted R-squared:  0.0201 
## F-statistic: 6.537 on 5 and 1345 DF,  p-value: 5.108e-06
#Using manipulation and trait reliance on feelings and their interaction. 
summary(lm(change ~ manip * generalmode, data=all))
## 
## Call:
## lm(formula = change ~ manip * generalmode, data = all)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -60.002  -8.560  -4.237   5.083  92.986 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        7.97062    1.62427   4.907 1.04e-06 ***
## manip             -5.37118    2.42459  -2.215   0.0269 *  
## generalmode        0.01371    0.03577   0.383   0.7017    
## manip:generalmode  0.12871    0.05171   2.489   0.0129 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.95 on 1347 degrees of freedom
##   (692 observations deleted due to missingness)
## Multiple R-squared:  0.01103,    Adjusted R-squared:  0.008832 
## F-statistic:  5.01 on 3 and 1347 DF,  p-value: 0.001858
#Breaking down that interaction, splitting into high and low reliance on feelings people. 
summary(all$generalmode)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00   32.50   46.00   43.75   55.00   86.50
hiF<-subset(all, generalmode>=46)
loF<-subset(all, generalmode<46)

#Again, people who already rely on their feelings (hiF) a lot change their attitudes more in the "relying on feelings is good" condition than in the "relying on feelings is bad" condition.
summary(lm(change~manip, data=hiF))
## 
## Call:
## lm(formula = change ~ manip, data = hiF)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -60.224  -9.724  -4.815   5.685  88.776 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   8.3146     0.9647   8.619   <2e-16 ***
## manip         2.9097     1.3259   2.194   0.0285 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.28 on 680 degrees of freedom
##   (353 observations deleted due to missingness)
## Multiple R-squared:  0.007032,   Adjusted R-squared:  0.005572 
## F-statistic: 4.816 on 1 and 680 DF,  p-value: 0.02854
hiFcond_hiFtrait<-subset(hiF, hiTIF==1)
loFcond_hiFtrait<-subset(hiF, loTIF==1)
t.test(hiFcond_hiFtrait$change, loFcond_hiFtrait$change)
## 
##  Welch Two Sample t-test
## 
## data:  hiFcond_hiFtrait$change and loFcond_hiFtrait$change
## t = 2.2146, df = 678.96, p-value = 0.02712
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.330002 5.489468
## sample estimates:
## mean of x mean of y 
## 11.224377  8.314642
#The opposite is true for people who don't rely on their feelings: they change their attitudes more in the "relying on feelings is bad" condition. 
summary(lm(change~manip, data=loF))
## 
## Call:
## lm(formula = change ~ manip, data = loF)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -56.529  -7.756  -4.256   4.244  93.471 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   8.7556     0.7643  11.456   <2e-16 ***
## manip        -2.2266     1.1209  -1.986   0.0474 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.46 on 667 degrees of freedom
##   (339 observations deleted due to missingness)
## Multiple R-squared:  0.005881,   Adjusted R-squared:  0.004391 
## F-statistic: 3.946 on 1 and 667 DF,  p-value: 0.04739
hiFcond_loFtrait<-subset(loF, hiTIF==1)
loFcond_loFtrait<-subset(loF, loTIF==1)
t.test(hiFcond_loFtrait$change, loFcond_loFtrait$change)
## 
##  Welch Two Sample t-test
## 
## data:  hiFcond_loFtrait$change and loFcond_loFtrait$change
## t = -1.9802, df = 644.77, p-value = 0.04811
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -4.4346991 -0.0185963
## sample estimates:
## mean of x mean of y 
##  6.528939  8.755587
#Interaction between manipulation and political party.
summary(lm(change ~ manip * party, data=all))
## 
## Call:
## lm(formula = change ~ manip * party, data = all)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -60.176  -8.176  -4.676   5.073  91.573 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   10.314      2.099   4.913 1.01e-06 ***
## manip         -5.636      2.962  -1.902   0.0573 .  
## party         -1.104      1.254  -0.880   0.3789    
## manip:party    3.853      1.774   2.171   0.0301 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16 on 1347 degrees of freedom
##   (692 observations deleted due to missingness)
## Multiple R-squared:  0.004365,   Adjusted R-squared:  0.002147 
## F-statistic: 1.968 on 3 and 1347 DF,  p-value: 0.1169
#Democrats change their attitudes more in the "feelings are good" condition... I guess because their initial feelings are already positive? Republicans aren't affected by the manipulation at all. 
rep<-subset(all, party==1)
dem<-subset(all, party==2)

summary(lm(change~manip, data=rep))
## 
## Call:
## lm(formula = change ~ manip, data = rep)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -59.210  -8.210  -4.427   5.573  91.573 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   9.2103     0.9867   9.335   <2e-16 ***
## manip        -1.7831     1.3903  -1.282      0.2    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16.24 on 544 degrees of freedom
##   (279 observations deleted due to missingness)
## Multiple R-squared:  0.003014,   Adjusted R-squared:  0.001182 
## F-statistic: 1.645 on 1 and 544 DF,  p-value: 0.2002
summary(lm(change~manip, data=dem))
## 
## Call:
## lm(formula = change ~ manip, data = dem)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -60.176  -8.107  -5.176   4.824  89.824 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    8.107      0.784  10.340   <2e-16 ***
## manip          2.070      1.116   1.854   0.0641 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.84 on 803 degrees of freedom
##   (413 observations deleted due to missingness)
## Multiple R-squared:  0.004262,   Adjusted R-squared:  0.003022 
## F-statistic: 3.437 on 1 and 803 DF,  p-value: 0.06412
#Democrats' initial attitudes are definitely more positive - we don't know if those attitudes are feelings-based, but they could be since there isn't a correlation between party and reliance on feelings.
t.test(rep$cars1, dem$cars1)
## 
##  Welch Two Sample t-test
## 
## data:  rep$cars1 and dem$cars1
## t = -5.7503, df = 1101.8, p-value = 1.153e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -14.251027  -6.999778
## sample estimates:
## mean of x mean of y 
##  41.93353  52.55893
t.test(rep$meat1, dem$meat1)
## 
##  Welch Two Sample t-test
## 
## data:  rep$meat1 and dem$meat1
## t = -3.3011, df = 1172.6, p-value = 0.0009922
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -9.754334 -2.481780
## sample estimates:
## mean of x mean of y 
##  48.09836  54.21642
t.test(rep$terror1, dem$terror1)
## 
##  Welch Two Sample t-test
## 
## data:  rep$terror1 and dem$terror1
## t = 10.55, df = 1242.2, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   9.522006 13.872595
## sample estimates:
## mean of x mean of y 
##   42.5599   30.8626
t.test(rep$generalmode, dem$generalmode)
## 
##  Welch Two Sample t-test
## 
## data:  rep$generalmode and dem$generalmode
## t = 1.0634, df = 1791.5, p-value = 0.2878
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.6816367  2.2960478
## sample estimates:
## mean of x mean of y 
##  44.23455  43.42734
#However there is a correlation between social conservatism in particular and reliance on feelings...
cor.test(all$generalmode, all$poli2_2)
## 
##  Pearson's product-moment correlation
## 
## data:  all$generalmode and all$poli2_2
## t = -3.662, df = 2041, p-value = 0.0002567
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.12372615 -0.03755702
## sample estimates:
##         cor 
## -0.08079254
#In addition to the interaction between party and the reliance on feelings manipulatin, there is also an interaction between party and reliance on feelings (trait) - again, no effect of reliance on feelings for republicans, but for democrats more reliance on feelings leads to greater attitude change. This seems to suggest again that democrats just have more positive feelings towards these targets. So we want democrats to rely more on their feelings and republicans to rely less on their feelings... or just try to improve republican's feelings.
summary(lm(change ~ generalmode * party, data=all))
## 
## Call:
## lm(formula = change ~ generalmode * party, data = all)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -59.580  -8.394  -4.430   4.800  92.345 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)   
## (Intercept)       11.61380    4.15239   2.797  0.00523 **
## generalmode       -0.09547    0.08808  -1.084  0.27864   
## party             -3.82975    2.46892  -1.551  0.12109   
## generalmode:party  0.10742    0.05257   2.043  0.04122 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.95 on 1347 degrees of freedom
##   (692 observations deleted due to missingness)
## Multiple R-squared:  0.01022,    Adjusted R-squared:  0.008011 
## F-statistic: 4.634 on 3 and 1347 DF,  p-value: 0.003138
summary(lm(change~generalmode, data=rep))
## 
## Call:
## lm(formula = change ~ generalmode, data = rep)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -58.513  -8.392  -4.481   5.057  90.612 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  7.78405    1.96526   3.961 8.46e-05 ***
## generalmode  0.01196    0.04160   0.287    0.774    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16.27 on 544 degrees of freedom
##   (279 observations deleted due to missingness)
## Multiple R-squared:  0.0001518,  Adjusted R-squared:  -0.001686 
## F-statistic: 0.08261 on 1 and 544 DF,  p-value: 0.7739
summary(lm(change~generalmode, data=dem))
## 
## Call:
## lm(formula = change ~ generalmode, data = dem)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -59.580  -8.849  -4.163   4.622  92.345 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.95429    1.52195   2.598 0.009544 ** 
## generalmode  0.11938    0.03271   3.650 0.000279 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.74 on 803 degrees of freedom
##   (413 observations deleted due to missingness)
## Multiple R-squared:  0.01632,    Adjusted R-squared:  0.0151 
## F-statistic: 13.32 on 1 and 803 DF,  p-value: 0.0002791

2nd only