Note for R-BA students:
What is your objective of doing this exercise
- learn RMD
- analyse patient data
so please put the same in your own words
Note for R-BA students:
Probelm definition goes here
Extarct relavant text from problem file and paste here
knitr Global Options
# for development
knitr::opts_chunk$set(echo=TRUE, eval=TRUE, error=TRUE, warning=TRUE, message=TRUE, cache=FALSE, tidy=FALSE, fig.path='figures/')
# for production
#knitr::opts_chunk$set(echo=TRUE, eval=TRUE, error=FALSE, warning=FALSE, message=FALSE, cache=FALSE, tidy=FALSE, fig.path='figures/')
Load Libraries
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Read Data
# inline comments
dfrPatient <- read.csv("./data/patient-data.csv", header=T, stringsAsFactors=F)
intRowCount <- nrow(dfrPatient)
head(dfrPatient)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/001 Demetrius White Male False 182.87 76.57
## 2 AC/AH/017 Rosario White Male False 179.12 80.43
## 3 AC/AH/020 Julio Black Male False 169.15 75.48
## 4 AC/AH/022 Lupe White Male False 175.66 94.54
## 5 AC/AH/029 Lavern White Female False 164.47 71.78
## 6 AC/AH/033 Bernie Dog Female True 158.27 69.90
## BirthDate State Pet HealthGrade Died RecordDate
## 1 31-01-1972 Georgia,xxx Dog 2 False 25-11-2015
## 2 09-06-1972 Missouri Dog 2 False 25-11-2015
## 3 03-07-1972 Pennsylvania None 2 False 25-11-2015
## 4 11-08-1972 Florida Cat 1 False 25-11-2015
## 5 06-06-1973 Iowa NULL 2 True 25-11-2015
## 6 25-06-1973 Maryland Dog 2 False 25-11-2015
Total Rows Of Patient File: 100
Add coloumn BMI-Value
# inline comments
dfrPatient <- mutate(dfrPatient, BMIValue=(WeightInKgs/(HeightInCms/100)^2))
head(dfrPatient)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/001 Demetrius White Male False 182.87 76.57
## 2 AC/AH/017 Rosario White Male False 179.12 80.43
## 3 AC/AH/020 Julio Black Male False 169.15 75.48
## 4 AC/AH/022 Lupe White Male False 175.66 94.54
## 5 AC/AH/029 Lavern White Female False 164.47 71.78
## 6 AC/AH/033 Bernie Dog Female True 158.27 69.90
## BirthDate State Pet HealthGrade Died RecordDate BMIValue
## 1 31-01-1972 Georgia,xxx Dog 2 False 25-11-2015 22.89674
## 2 09-06-1972 Missouri Dog 2 False 25-11-2015 25.06859
## 3 03-07-1972 Pennsylvania None 2 False 25-11-2015 26.38080
## 4 11-08-1972 Florida Cat 1 False 25-11-2015 30.63867
## 5 06-06-1973 Iowa NULL 2 True 25-11-2015 26.53567
## 6 25-06-1973 Maryland Dog 2 False 25-11-2015 27.90487
Add column BMI-Label
# inline comments
dfrPatient <- mutate(dfrPatient, BMILabel=NA)
dfrPatient$BMILabel <- ifelse(dfrPatient$BMIValue < 18.50,"UNDERWEIGHT",
ifelse(dfrPatient$BMIValue > 18.50 & dfrPatient$BMIValue < 25.00, "NORMAL",
ifelse(dfrPatient$BMIValue > 25.00 & dfrPatient$BMIValue < 30.00, "OVERWEIGHT",
ifelse(dfrPatient$BMIValue > 30.00,"Obese", NA))))
head(dfrPatient)
## ID Name Race Gender Smokes HeightInCms WeightInKgs
## 1 AC/AH/001 Demetrius White Male False 182.87 76.57
## 2 AC/AH/017 Rosario White Male False 179.12 80.43
## 3 AC/AH/020 Julio Black Male False 169.15 75.48
## 4 AC/AH/022 Lupe White Male False 175.66 94.54
## 5 AC/AH/029 Lavern White Female False 164.47 71.78
## 6 AC/AH/033 Bernie Dog Female True 158.27 69.90
## BirthDate State Pet HealthGrade Died RecordDate BMIValue
## 1 31-01-1972 Georgia,xxx Dog 2 False 25-11-2015 22.89674
## 2 09-06-1972 Missouri Dog 2 False 25-11-2015 25.06859
## 3 03-07-1972 Pennsylvania None 2 False 25-11-2015 26.38080
## 4 11-08-1972 Florida Cat 1 False 25-11-2015 30.63867
## 5 06-06-1973 Iowa NULL 2 True 25-11-2015 26.53567
## 6 25-06-1973 Maryland Dog 2 False 25-11-2015 27.90487
## BMILabel
## 1 NORMAL
## 2 OVERWEIGHT
## 3 OVERWEIGHT
## 4 Obese
## 5 OVERWEIGHT
## 6 OVERWEIGHT
Note for R-BA students:
now start the same with your code
Note
Brief summary note on your analysis of the patient data file
Objectives
Have the objective set at the start met or not met