files
 [1] "EPI-103_CG.output.txt" "EPI-104_CG.output.txt" "EPI-111_CG.output.txt" "EPI-113_CG.output.txt" "EPI-119_CG.output.txt" "EPI-120_CG.output.txt"
 [7] "EPI-127_CG.output.txt" "EPI-128_CG.output.txt" "EPI-135_CG.output.txt" "EPI-136_CG.output.txt" "EPI-143_CG.output.txt" "EPI-145_CG.output.txt"
sharedLoci$EPI_103_Meth <- rowSums(EPI_103_CG_output$`Watson METH`, EPI_103_CG_output$`Crick METH`, na.rm =TRUE)
Error in rowSums(EPI_103_CG_output$`Watson METH`, EPI_103_CG_output$`Crick METH`,  : 
  'x' must be an array of at least two dimensions
nrow(sharedLoci)
[1] 5016318

Number of loci that have data for all samples.

nrow(sharedLoci2)
[1] 611458

Mean total coverage by sample

samp.means
EPI_103_TotCov  EPI-104TotCov  EPI-111TotCov  EPI-113TotCov  EPI-119TotCov  EPI-120TotCov  EPI-127TotCov  EPI-128TotCov  EPI-135TotCov  EPI-136TotCov 
      5.891979       8.631464       8.360712       7.761975       7.805427       7.539605       6.963849       7.800521       8.961659       8.498826 
 EPI-143TotCov  EPI-145TotCov 
      6.360996       7.835375 

Mean coverage

mean(samp.means)
[1] 7.701032

Then, iff we decide to restrict coverage to only that which is greater than 10x, we’re down to 18,000ish records.

nrow(sharedLoci3)
[1] 17823

Our coverage means increase a lot, with a total coverage mean of 48.

mean(samp.means2)
[1] 48.2429

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Cmd+Option+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Cmd+Shift+K to preview the HTML file).

LS0tCnRpdGxlOiAiQ291bnRzIGFuZCBjb3ZlcmFnZSBzdGF0cyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCmBgYHtyfQoKbGlicmFyeShkYXRhLnRhYmxlKQoKc2V0d2QoIn4vRG9jdW1lbnRzL1JvYmVydHNMYWIvRXhwbG9yaW5nL0RheTEwIikKCmZpbGVzIDwtIGxpc3QuZmlsZXMocGF0dGVybiA9ICIqIikKCmZpbGVzCgpgYGAKCmBgYHtyfQoKRVBJXzEwM19DR19vdXRwdXQgPC0gcmVhZF9kZWxpbSgifi9Eb2N1bWVudHMvUm9iZXJ0c0xhYi9FeHBsb3JpbmcvRGF5MTAvRVBJLTEwM19DRy5vdXRwdXQudHh0IiwgCiAgICAiXHQiLCBlc2NhcGVfZG91YmxlID0gRkFMU0UsIG5hID0gIi4iLCAKICAgIHRyaW1fd3MgPSBUUlVFKQoKc2hhcmVkTG9jaSA8LSBhcy5kYXRhLnRhYmxlKHBhc3RlMChFUElfMTAzX0NHX291dHB1dCRgI0NIUk9NYCwgIi0iLCBFUElfMTAzX0NHX291dHB1dCRQT1MpKQpjb2xuYW1lcyhzaGFyZWRMb2NpKVsxXSA8LSAibG9jIgoKc2hhcmVkTG9jaSRFUElfMTAzX01ldGggPC0gcm93U3VtcyhjYmluZChFUElfMTAzX0NHX291dHB1dCRgV2F0c29uIE1FVEhgLCBFUElfMTAzX0NHX291dHB1dCRgQ3JpY2sgTUVUSGApLCBuYS5ybSA9VFJVRSkKc2hhcmVkTG9jaSRFUElfMTAzX1RvdENvdiA8LSByb3dTdW1zKGNiaW5kKEVQSV8xMDNfQ0dfb3V0cHV0JGBXYXRzb24gQ09WRVJBR0VgLCBFUElfMTAzX0NHX291dHB1dCRgQ3JpY2sgQ09WRVJBR0VgKSwgbmEucm0gPVRSVUUpCnNoYXJlZExvY2kkRVBJXzEwM19QZXJjTWV0aCA8LSBzaGFyZWRMb2NpJEVQSV8xMDNfTWV0aCAvIHNoYXJlZExvY2kkRVBJXzEwM19Ub3RDb3YKCmBgYAoKYGBge3J9Cgpmb3IoaSBpbiAyOiBsZW5ndGgoZmlsZXMpKSAgIHsKICAKICB0ZW1wIDwtIHJlYWRfZGVsaW0ocGFzdGUwKCJ+L0RvY3VtZW50cy9Sb2JlcnRzTGFiL0V4cGxvcmluZy9EYXkxMC8iLCBmaWxlc1tpXSksIAogICAgIlx0IiwgZXNjYXBlX2RvdWJsZSA9IEZBTFNFLCBuYSA9ICIuIiwgCiAgICB0cmltX3dzID0gVFJVRSkKICAKICB0ZW1wLjIgPC0gYXMuZGF0YS50YWJsZShwYXN0ZTAodGVtcCRgI0NIUk9NYCwgIi0iLCB0ZW1wJFBPUykpICAKICAKICB0ZW1wLjIkTWV0aCA8LSByb3dTdW1zKGNiaW5kKHRlbXAkYFdhdHNvbiBNRVRIYCwgdGVtcCRgQ3JpY2sgTUVUSGApLCBuYS5ybSA9VFJVRSkKICB0ZW1wLjIkVG90Q292IDwtIHJvd1N1bXMoY2JpbmQodGVtcCRgV2F0c29uIENPVkVSQUdFYCwgdGVtcCRgQ3JpY2sgQ09WRVJBR0VgKSwgbmEucm0gPVRSVUUpCiAgdGVtcC4yJHRlbXBQZXJjTWV0aCA8LSB0ZW1wLjIkTWV0aCAvIHRlbXAuMiRUb3RDb3YKICAKICBjb2xuYW1lcyh0ZW1wLjIpWzE6NF0gPC0gYygibG9jIiwgcGFzdGUwKHN1YnN0cihmaWxlc1tpXSwgMSwgNyksICJNZXRoIiksIHBhc3RlMChzdWJzdHIoZmlsZXNbaV0sIDEsIDcpLCAiVG90Q292IiksIHBhc3RlMChzdWJzdHIoZmlsZXNbaV0sIDEsIDcpLCAiUGVyY01ldGgiKSkKICAKICBzaGFyZWRMb2NpIDwtIG1lcmdlKHNoYXJlZExvY2ksIHRlbXAuMiwgYnkgPSAibG9jIiwgYWxsID0gVFJVRSkKfQoKCndyaXRlLnRhYmxlKHNoYXJlZExvY2ksIGZpbGUgPSAiYWxsTG9jaS5jc3YiLCBxdW90ZSA9IEZBTFNFLCBzZXAgPSAiLCIsIGNvbC5uYW1lcyA9IFRSVUUsIHJvdy5uYW1lcyA9IEZBTFNFKQoKbnJvdyhzaGFyZWRMb2NpKQpgYGAKCgpOdW1iZXIgb2YgbG9jaSB0aGF0IGhhdmUgZGF0YSBmb3IgYWxsIHNhbXBsZXMuCmBgYHtyfQoKc2hhcmVkTG9jaTIgPC0gc2hhcmVkTG9jaVt3aGljaChjb21wbGV0ZS5jYXNlcyhzaGFyZWRMb2NpKSA9PSBUUlVFKSxdCgoKd3JpdGUudGFibGUoc2hhcmVkTG9jaTIsIGZpbGUgPSAiY29tbW9uTG9jaS5jc3YiLCBxdW90ZSA9IEZBTFNFLCBzZXAgPSAiLCIsIGNvbC5uYW1lcyA9IFRSVUUsIHJvdy5uYW1lcyA9IEZBTFNFKQoKCm5yb3coc2hhcmVkTG9jaTIpCmBgYAoKTWVhbiB0b3RhbCBjb3ZlcmFnZSBieSBzYW1wbGUKCmBgYHtyfQoKc2FtcC5tZWFucyA8LSBjb2xNZWFucyhzaGFyZWRMb2NpMlssYygzLDYsOSwxMiwxNSwxOCwyMSwyNCwyNywzMCwzMywzNildKQoKc2FtcC5tZWFucwpgYGAKCk1lYW4gY292ZXJhZ2UKCmBgYHtyfQoKbWVhbihzYW1wLm1lYW5zKQoKYGBgCgpUaGVuLCBpZmYgd2UgZGVjaWRlIHRvIHJlc3RyaWN0IGNvdmVyYWdlIHRvIG9ubHkgdGhhdCB3aGljaCBpcyBncmVhdGVyIHRoYW4gMTB4LCB3ZSdyZSBkb3duIHRvIDE4LDAwMGlzaCByZWNvcmRzLgoKYGBge3J9Cgp0b3Rjb3YuZGIzIDwtIHRvdGNvdi5kYjJbYXBwbHkodG90Y292LmRiMlssIGMoNDoxNSldLCBNQVJHSU4gPSAxLCBmdW5jdGlvbih4KSBhbGwoeCA+IDMpKSwgXQoKCnNoYXJlZExvY2kzIDwtIHNoYXJlZExvY2kyW2FwcGx5KHNoYXJlZExvY2kyWywgYyhjKDMsNiw5LDEyLDE1LDE4LDIxLDI0LDI3LDMwLDMzLDM2KSldLCBNQVJHSU4gPSAxLCBmdW5jdGlvbih4KSBhbGwoeCA+IDEwKSksXQoKd3JpdGUudGFibGUoc2hhcmVkTG9jaTMsIGZpbGUgPSAiMTB4Y29tbW9uTG9jaS5jc3YiLCBxdW90ZSA9IEZBTFNFLCBzZXAgPSAiLCIsIGNvbC5uYW1lcyA9IFRSVUUsIHJvdy5uYW1lcyA9IEZBTFNFKQoKbnJvdyhzaGFyZWRMb2NpMykKYGBgCgpPdXIgY292ZXJhZ2UgbWVhbnMgaW5jcmVhc2UgYSBsb3QsIHdpdGggYSB0b3RhbCBjb3ZlcmFnZSBtZWFuIG9mIDQ4LgpgYGB7cn0KCnNhbXAubWVhbnMyIDwtIGNvbE1lYW5zKHNoYXJlZExvY2kzWyxjKDMsNiw5LDEyLDE1LDE4LDIxLDI0LDI3LDMwLDMzLDM2KV0pCgptZWFuKHNhbXAubWVhbnMyKQpgYGAKCgoKQWRkIGEgbmV3IGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqSW5zZXJ0IENodW5rKiBidXR0b24gb24gdGhlIHRvb2xiYXIgb3IgYnkgcHJlc3NpbmcgKkNtZCtPcHRpb24rSSouCgpXaGVuIHlvdSBzYXZlIHRoZSBub3RlYm9vaywgYW4gSFRNTCBmaWxlIGNvbnRhaW5pbmcgdGhlIGNvZGUgYW5kIG91dHB1dCB3aWxsIGJlIHNhdmVkIGFsb25nc2lkZSBpdCAoY2xpY2sgdGhlICpQcmV2aWV3KiBidXR0b24gb3IgcHJlc3MgKkNtZCtTaGlmdCtLKiB0byBwcmV2aWV3IHRoZSBIVE1MIGZpbGUpLgo=