The core Manybabies team
The modal study in infant cognition research:
Xu & Spelke (2000) method
Xu & Spelke (2000) discrimination (8 * 16)
Xu & Spelke (2000) no discrimination (8 * 12)
A p curve of infant cognition findings, by Christina Bergmann and MetaLab
IDS meta analysis
##
## Multivariate Meta-Analysis Model (k = 56; method: REML)
##
## Variance Components:
##
## estim sqrt nlvls fixed factor
## sigma^2.1 0.0000 0.0000 10 no lab
## sigma^2.2 0.1137 0.3372 17 no lab/study
##
## Test for Heterogeneity:
## Q(df = 55) = 239.3490, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.3164 0.0884 3.5785 0.0003 0.1431 0.4897 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
We plot forest and funnel plots for this first random effects regression.
##
## Multivariate Meta-Analysis Model (k = 56; method: ML)
##
## Variance Components:
##
## estim sqrt nlvls fixed factor
## sigma^2.1 0.0022 0.0472 10 no lab
## sigma^2.2 0.1125 0.3354 17 no lab/study
##
## Test for Residual Heterogeneity:
## QE(df = 53) = 210.8762, p-val < .0001
##
## Test of Moderators (coefficient(s) 2,3):
## QM(df = 2) = 24.9332, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.0696 0.1032 0.6752 0.4996 -0.1325 0.2718
## scale(age) -0.1536 0.0565 -2.7216 0.0065 -0.2643 -0.0430 **
## modalityspeech 0.4938 0.1071 4.6092 <.0001 0.2838 0.7037 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Dogs stimuli
##
## Multivariate Meta-Analysis Model (k = 56; method: ML)
##
## Variance Components:
##
## estim sqrt nlvls fixed factor
## sigma^2.1 0.0000 0.0000 10 no lab
## sigma^2.2 0.1148 0.3388 17 no lab/study
##
## Test for Residual Heterogeneity:
## QE(df = 52) = 202.9058, p-val < .0001
##
## Test of Moderators (coefficient(s) 2,3,4):
## QM(df = 3) = 30.1833, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2885 0.1404 2.0546 0.0399 0.0133 0.5637
## scale(age) -0.1366 0.0570 -2.3960 0.0166 -0.2483 -0.0249
## modalityspeech 0.2357 0.1550 1.5202 0.1285 -0.0682 0.5395
## semanticsmeaningless -0.3595 0.1563 -2.2997 0.0215 -0.6658 -0.0531
##
## intrcpt *
## scale(age) *
## modalityspeech
## semanticsmeaningless *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Finally, we test if the model that includes semantics provides a better fit – it does.
## df AIC BIC AICc logLik LRT pval QE
## Full 6 116.9516 129.1037 118.6659 -52.4758 202.9058
## Reduced 5 120.2364 130.3632 121.4364 -55.1182 5.2848 0.0215 210.8762
We can also fit a p curve. Do a density plot of all p values less than 0.05, and then run the Fisher-style test that is suggested in Simmonsen et al 2004.
## Warning: Removed 21 rows containing non-finite values (stat_bin).
## Warning: Removed 2 rows containing missing values (geom_path).
## Warning: Removed 21 rows containing non-finite values (stat_bin).
## Warning: Removed 4 rows containing missing values (geom_path).
## Warning: Removed 21 rows containing non-finite values (stat_bin).
## Warning: Removed 4 rows containing missing values (geom_path).
Rules results
Rules Edinburgh Princeton Comparison