library(lavaan, quietly = TRUE, warn.conflicts = FALSE)
library(semPlot, quietly = TRUE, warn.conflicts = FALSE)
library(dplyr, quietly = TRUE, warn.conflicts = FALSE)
library(psych, quietly = TRUE, warn.conflicts = FALSE)
library(ICC, quietly = TRUE, warn.conflicts = FALSE)
library(Amelia, quietly = TRUE, warn.conflicts = FALSE)
library(BaylorEdPsych, quietly = TRUE, warn.conflicts = FALSE)
library(ggplot2)
library(reshape2)
#rm(list = ls())
setwd(dir = "~/OneDrive/MANUSCRIPTS/2017 MP CFA")
data <- read.csv(file = "data.csv", header = TRUE, sep = ";")
#View(data)
paste(round(sum(is.na(data))/prod(dim(data))*100, 5), "%", sep = "")
## [1] "0%"
nrow(data)
## [1] 436
1 = female; 2 = male
table(data$Gender)
##
## 1 2
## 222 214
table(data$Age)
##
## 7 8 9 10
## 104 113 109 110
Mean age??
describe(data[,8:21], na.rm = TRUE, skew = TRUE, ranges = TRUE, type = 2, trim = 0)
## vars n mean sd median trimmed mad min max range skew
## FBT 1 436 8.19 4.37 7.50 8.19 5.19 1.00 24.00 23.00 0.75
## PT 2 436 19.64 4.00 19.12 19.64 3.83 12.30 32.65 20.35 0.79
## SAR 3 436 21.44 5.85 21.00 21.44 5.93 3.00 35.00 32.00 0.12
## SBJ 4 436 123.86 22.59 123.50 123.86 21.50 63.00 186.00 123.00 0.15
## HT 5 436 16.62 4.84 16.00 16.62 4.45 7.00 35.00 28.00 0.44
## SU 6 436 16.67 5.31 17.00 16.67 4.45 0.00 34.00 34.00 -0.09
## BAH 7 436 15.95 11.80 12.85 15.95 10.07 0.00 69.18 69.18 1.37
## SR 8 436 24.28 2.60 24.18 24.28 2.52 18.23 33.90 15.67 0.44
## ESR 9 436 22.24 9.13 22.00 22.24 10.38 5.00 50.00 45.00 0.37
## BB 10 436 44.61 14.76 44.00 44.61 17.79 5.00 72.00 67.00 -0.09
## OLH 11 436 49.89 17.09 51.00 49.89 20.02 8.00 78.00 70.00 -0.22
## JS 12 436 49.53 15.30 50.50 49.53 17.05 17.00 89.00 72.00 -0.01
## MS 13 436 39.79 9.28 39.00 39.79 8.90 20.00 76.00 56.00 0.53
## MQ 14 436 96.38 14.48 96.00 96.38 14.83 54.00 144.00 90.00 0.11
## kurtosis se
## FBT 0.57 0.21
## PT 0.42 0.19
## SAR -0.22 0.28
## SBJ -0.05 1.08
## HT 0.44 0.23
## SU -0.07 0.25
## BAH 2.13 0.57
## SR 0.47 0.12
## ESR -0.22 0.44
## BB -0.75 0.71
## OLH -0.81 0.82
## JS -0.72 0.73
## MS 0.34 0.44
## MQ 0.30 0.69
cor.mat <- cor(data[,8:21], method = "pearson")
round(cor.mat, 2)
## FBT PT SAR SBJ HT SU BAH SR ESR BB OLH
## FBT 1.00 0.14 0.01 -0.16 -0.13 -0.17 -0.12 0.17 -0.18 -0.17 -0.08
## PT 0.14 1.00 -0.01 -0.21 -0.31 -0.15 -0.04 0.32 -0.21 -0.27 -0.32
## SAR 0.01 -0.01 1.00 0.04 -0.13 0.02 0.08 -0.06 -0.07 -0.09 -0.07
## SBJ -0.16 -0.21 0.04 1.00 0.46 0.50 0.24 -0.35 0.44 0.27 0.39
## HT -0.13 -0.31 -0.13 0.46 1.00 0.37 0.02 -0.19 0.33 0.26 0.40
## SU -0.17 -0.15 0.02 0.50 0.37 1.00 0.22 -0.30 0.28 0.26 0.30
## BAH -0.12 -0.04 0.08 0.24 0.02 0.22 1.00 -0.13 0.20 0.05 0.06
## SR 0.17 0.32 -0.06 -0.35 -0.19 -0.30 -0.13 1.00 -0.42 -0.30 -0.29
## ESR -0.18 -0.21 -0.07 0.44 0.33 0.28 0.20 -0.42 1.00 0.25 0.31
## BB -0.17 -0.27 -0.09 0.27 0.26 0.26 0.05 -0.30 0.25 1.00 0.61
## OLH -0.08 -0.32 -0.07 0.39 0.40 0.30 0.06 -0.29 0.31 0.61 1.00
## JS -0.13 -0.41 -0.05 0.37 0.41 0.32 -0.02 -0.37 0.28 0.56 0.70
## MS -0.13 -0.30 0.01 0.34 0.36 0.23 0.00 -0.27 0.22 0.45 0.60
## MQ -0.14 -0.16 -0.05 0.27 0.17 0.18 0.11 -0.24 0.23 0.69 0.73
## JS MS MQ
## FBT -0.13 -0.13 -0.14
## PT -0.41 -0.30 -0.16
## SAR -0.05 0.01 -0.05
## SBJ 0.37 0.34 0.27
## HT 0.41 0.36 0.17
## SU 0.32 0.23 0.18
## BAH -0.02 0.00 0.11
## SR -0.37 -0.27 -0.24
## ESR 0.28 0.22 0.23
## BB 0.56 0.45 0.69
## OLH 0.70 0.60 0.73
## JS 1.00 0.68 0.65
## MS 0.68 1.00 0.73
## MQ 0.65 0.73 1.00
cor.mat.low <- cor.mat[lower.tri(cor.mat)]
mean(abs(cor.mat.low))
## [1] 0.2577828
df_melt <- melt(data[,8:21])
## No id variables; using all as measure variables
hist(data[,8:21], rugs = TRUE)
plot(df_melt)
model <- '
Endurance =~ ESR
Strength =~ SU + BAH + SBJ + HT
Speed =~ PT + SR + JS
Coordination =~ FBT + BB + OLH + MS
Flexibility =~ SAR
SEX =~ Gender
BMI =~ BMI_obs
AGE =~ Age
Endurance ~ BMI + SEX + AGE
Strength ~ BMI + SEX + AGE
Speed ~ BMI + SEX + 1*AGE
Coordination ~ BMI + SEX + AGE
Flexibility ~ BMI + SEX + AGE
AGE ~~ 0*SEX
'
#model <- '
#Endurance =~ ESR
#Strength =~ SU + BAH + SBJ + HT
#Speed =~ PT + SR + JS
#Coordination =~ FBT + BB + OLH + MS
#Flexibility =~ SAR
#MPA =~ Endurance + Strength + Speed + Coordination + Flexibility
According to Muthén, 1984
fitted.model <- cfa(model = model, data = data, std.lv = TRUE, mimic = "Mplus", std.ov = FALSE, estimator = "MLR", orthogonal = FALSE, bootstrap = 5000)
## Warning in lav_data_full(data = data, group = group, cluster = cluster, :
## lavaan WARNING: some observed variances are (at least) a factor 1000 times
## larger than others; use varTable(fit) to investigate
Power analysis for the exact fit test (based on the RMSEA distribution). Statistical power for the detection of a misspecified model (RMSEA > .08).
df <- fitted.model@test[[1]]$df
alfa <- .05
n <- nrow(data)
rmsea0 <- .05 # RMSEA under H0
rmseaa <- .08 # RMSEA under H1
ncp0 <- (n-1)*df*rmsea0**2 ;
ncpa <-(n-1)*df*rmseaa**2 ;
if(rmsea0 < rmseaa) {
cval <- qchisq(1-alfa,df=df,ncp=ncp0)
sila.rmsea <- 1 - pchisq(cval,df=df,ncp=ncpa)
} else {
cval <- qchisq(alfa,df=df,ncp=ncp0)
sila.rmsea <- pchisq(cval,df=df,ncp=ncpa)
}
rm(ncp0, ncpa, cval)
print(round(sila.rmsea,10))
## [1] 0.9996337
Test of the model, estimates of free parameters (factor loadings)
summary(fitted.model, standardized = TRUE, rsquare = TRUE)
## lavaan (0.5-23.1097) converged normally after 148 iterations
##
## Number of observations 436
##
## Number of missing patterns 1
##
## Estimator ML Robust
## Minimum Function Test Statistic 494.699 494.350
## Degrees of freedom 83 83
## P-value (Chi-square) 0.000 0.000
## Scaling correction factor 1.001
## for the Yuan-Bentler correction (Mplus variant)
##
## Parameter Estimates:
##
## Information Observed
## Standard Errors Robust.huber.white
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Endurance =~
## ESR 8.256 0.281 29.348 0.000 9.035 1.000
## Strength =~
## SU 1.778 0.300 5.918 0.000 2.834 0.541
## BAH 1.128 0.624 1.809 0.070 1.799 0.153
## SBJ 9.426 1.434 6.573 0.000 15.025 0.678
## HT 2.148 0.168 12.751 0.000 3.424 0.722
## Speed =~
## PT -1.175 0.127 -9.222 0.000 -1.643 -0.417
## SR -0.673 0.083 -8.112 0.000 -0.942 -0.367
## JS 9.754 0.371 26.262 0.000 13.645 0.959
## Coordination =~
## FBT -0.417 0.143 -2.905 0.004 -0.652 -0.150
## BB 5.816 0.531 10.958 0.000 9.104 0.639
## OLH 8.279 0.625 13.248 0.000 12.961 0.800
## MS 4.114 0.333 12.346 0.000 6.441 0.725
## Flexibility =~
## SAR 5.765 0.181 31.817 0.000 5.843 1.000
## SEX =~
## Gender 0.500 0.000 1137.800 0.000 0.500 1.000
## BMI =~
## BMI_obs 2.852 0.117 24.357 0.000 2.852 1.000
## AGE =~
## Age 1.026 0.019 53.351 0.000 1.026 1.000
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Endurance ~
## BMI -0.290 0.051 -5.623 0.000 -0.265 -0.265
## SEX 0.175 0.047 3.691 0.000 0.160 0.160
## AGE 0.351 0.050 7.005 0.000 0.321 0.321
## Strength ~
## BMI -0.117 0.112 -1.046 0.295 -0.074 -0.074
## SEX 0.607 0.094 6.456 0.000 0.381 0.381
## AGE 1.099 0.147 7.473 0.000 0.690 0.690
## Speed ~
## BMI -0.187 0.049 -3.853 0.000 -0.134 -0.134
## SEX -0.002 0.046 -0.049 0.961 -0.002 -0.002
## AGE 1.000 0.715 0.715
## Coordination ~
## BMI -0.471 0.073 -6.417 0.000 -0.301 -0.301
## SEX 0.208 0.065 3.212 0.001 0.133 0.133
## AGE 1.189 0.119 10.017 0.000 0.760 0.760
## Flexibility ~
## BMI 0.048 0.052 0.917 0.359 0.047 0.047
## SEX -0.150 0.048 -3.133 0.002 -0.148 -0.148
## AGE -0.056 0.047 -1.176 0.240 -0.055 -0.055
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## SEX ~~
## AGE 0.000 0.000 0.000
## BMI -0.023 0.047 -0.491 0.624 -0.023 -0.023
## BMI ~~
## AGE 0.208 0.041 5.016 0.000 0.208 0.208
## .Endurance ~~
## .Strength 0.458 0.068 6.699 0.000 0.458 0.458
## .Speed 0.057 0.057 0.993 0.321 0.057 0.057
## .Coordination 0.074 0.058 1.288 0.198 0.074 0.074
## .Flexibility -0.020 0.051 -0.390 0.697 -0.020 -0.020
## .Strength ~~
## .Speed -0.022 0.091 -0.239 0.811 -0.022 -0.022
## .Coordination 0.084 0.103 0.815 0.415 0.084 0.084
## .Flexibility 0.066 0.076 0.867 0.386 0.066 0.066
## .Speed ~~
## .Coordination 0.775 0.072 10.827 0.000 0.775 0.775
## .Flexibility 0.005 0.063 0.076 0.940 0.005 0.005
## .Coordination ~~
## .Flexibility 0.013 0.065 0.192 0.847 0.013 0.013
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .ESR 22.243 0.437 50.953 0.000 22.243 2.462
## .SU 16.674 0.254 65.691 0.000 16.674 3.182
## .BAH 15.946 0.564 28.249 0.000 15.946 1.354
## .SBJ 123.865 1.081 114.606 0.000 123.865 5.586
## .HT 16.619 0.232 71.724 0.000 16.619 3.504
## .PT 19.638 0.191 102.660 0.000 19.638 4.988
## .SR 24.276 0.124 195.507 0.000 24.276 9.468
## .JS 49.532 0.732 67.671 0.000 49.532 3.481
## .FBT 8.186 0.209 39.151 0.000 8.186 1.879
## .BB 44.608 0.706 63.192 0.000 44.608 3.130
## .OLH 49.892 0.817 61.044 0.000 49.892 3.078
## .MS 39.791 0.444 89.650 0.000 39.791 4.481
## .SAR 21.435 0.280 76.593 0.000 21.435 3.669
## .Gender 1.491 0.024 62.269 0.000 1.491 2.982
## .BMI_obs 16.779 0.137 122.415 0.000 16.779 5.884
## .Age 8.516 0.053 160.245 0.000 8.516 8.301
## .Endurance 0.000 0.000 0.000
## .Strength 0.000 0.000 0.000
## .Speed 0.000 0.000 0.000
## .Coordination 0.000 0.000 0.000
## .Flexibility 0.000 0.000 0.000
## SEX 0.000 0.000 0.000
## BMI 0.000 0.000 0.000
## AGE 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .ESR 0.000 0.000 0.000
## .SU 19.436 2.135 9.105 0.000 19.436 0.708
## .BAH 135.449 12.899 10.501 0.000 135.449 0.977
## .SBJ 266.001 31.960 8.323 0.000 266.001 0.541
## .HT 10.771 1.588 6.784 0.000 10.771 0.479
## .PT 12.802 1.083 11.824 0.000 12.802 0.826
## .SR 5.688 0.463 12.291 0.000 5.688 0.865
## .JS 16.305 9.672 1.686 0.092 16.305 0.081
## .FBT 18.562 1.384 13.408 0.000 18.562 0.978
## .BB 120.280 9.488 12.678 0.000 120.280 0.592
## .OLH 94.685 10.293 9.199 0.000 94.685 0.360
## .MS 37.353 3.397 10.995 0.000 37.353 0.474
## .SAR 0.000 0.000 0.000
## .Gender 0.000 0.000 0.000
## .BMI_obs 0.000 0.000 0.000
## .Age 0.000 0.000 0.000
## .Endurance 1.000 0.835 0.835
## .Strength 1.000 0.394 0.394
## .Speed 1.000 0.511 0.511
## .Coordination 1.000 0.408 0.408
## .Flexibility 1.000 0.973 0.973
## SEX 1.000 1.000 1.000
## BMI 1.000 1.000 1.000
## AGE 1.000 1.000 1.000
##
## R-Square:
## Estimate
## ESR 1.000
## SU 0.292
## BAH 0.023
## SBJ 0.459
## HT 0.521
## PT 0.174
## SR 0.135
## JS 0.919
## FBT 0.022
## BB 0.408
## OLH 0.640
## MS 0.526
## SAR 1.000
## Gender 1.000
## BMI_obs 1.000
## Age 1.000
## Endurance 0.165
## Strength 0.606
## Speed 0.489
## Coordination 0.592
## Flexibility 0.027
mean(inspect(fitted.model,what="std")$lambda[inspect(fitted.model,what="std")$lambda > .0])
## [1] 0.7858236
Note the .robust indices
fitMeasures(fitted.model)
## npar fmin
## 69.000 0.567
## chisq df
## 494.699 83.000
## pvalue chisq.scaled
## 0.000 494.350
## df.scaled pvalue.scaled
## 83.000 0.000
## chisq.scaling.factor baseline.chisq
## 1.001 2609.243
## baseline.df baseline.pvalue
## 120.000 0.000
## baseline.chisq.scaled baseline.df.scaled
## 2494.934 120.000
## baseline.pvalue.scaled baseline.chisq.scaling.factor
## 0.000 1.046
## cfi tli
## 0.835 0.761
## nnfi rfi
## 0.761 0.726
## nfi pnfi
## 0.810 0.561
## ifi rni
## 0.837 0.835
## cfi.scaled tli.scaled
## 0.827 0.750
## cfi.robust tli.robust
## 0.834 0.760
## nnfi.scaled nnfi.robust
## 0.750 0.760
## rfi.scaled nfi.scaled
## 0.714 0.802
## ifi.scaled rni.scaled
## 0.802 0.835
## rni.robust logl
## 0.834 -20856.397
## unrestricted.logl aic
## -20609.047 41850.793
## bic ntotal
## 42132.150 436.000
## bic2 scaling.factor.h1
## 41913.181 1.033
## scaling.factor.h0 rmsea
## 1.071 0.107
## rmsea.ci.lower rmsea.ci.upper
## 0.098 0.116
## rmsea.pvalue rmsea.scaled
## 0.000 0.107
## rmsea.ci.lower.scaled rmsea.ci.upper.scaled
## 0.098 0.116
## rmsea.pvalue.scaled rmsea.robust
## 0.000 0.107
## rmsea.ci.lower.robust rmsea.ci.upper.robust
## 0.098 0.116
## rmsea.pvalue.robust rmr
## NA 9.411
## rmr_nomean srmr
## 9.411 0.103
## srmr_bentler srmr_bentler_nomean
## 0.091 0.096
## srmr_bollen srmr_bollen_nomean
## 0.101 0.086
## srmr_mplus srmr_mplus_nomean
## 0.103 0.088
## cn_05 cn_01
## 93.777 103.127
## gfi agfi
## 0.996 0.993
## pgfi mfi
## 0.544 0.624
## ecvi
## NA
Zatial iba narychlo vygenerovany, neskor upravim.
semPaths(fitted.model, style = "mx", pastel = TRUE,
edge.label.cex = 0.5, sizeLat = 5, nCharNodes = 0,
nDigits = 2, "Standardized", intercepts = FALSE,
residuals = TRUE, exoVar = FALSE, fade = TRUE,
groups = "latents", what = "path")
Exact test of the model indicates the presence of a model misspecification. Apart from approximate fit indices, it was also necessary to inspect local sources of model misfit based on the matrix of residual correlations.
residuals <- residuals(fitted.model, type = "normalized")$cov
residuals
## ESR SU BAH SBJ HT PT SR JS FBT
## ESR 0.275
## SU 0.031 0.335
## BAH 2.193 2.765 0.019
## SBJ 1.905 2.883 2.603 0.517
## HT -0.780 -0.152 -1.658 -0.181 0.522
## PT -2.104 -1.106 -0.191 -1.683 -3.789 0.381
## SR -7.398 -4.454 -1.885 -4.420 -1.569 3.404 0.294
## JS 1.265 2.138 -1.743 1.970 2.507 -0.906 -0.865 2.467
## FBT -2.793 -2.497 -2.425 -1.939 -1.367 1.702 2.390 -0.348 0.050
## BB 0.986 1.502 -0.063 0.576 0.110 -1.003 -2.210 1.819 -1.757
## OLH 1.438 1.486 -0.181 2.231 1.988 -1.008 -1.022 2.364 0.790
## MS -0.027 0.229 -1.264 1.459 1.447 -1.232 -0.997 2.732 -0.551
## SAR -0.053 1.102 2.103 1.534 -2.122 -0.409 -1.465 -0.326 0.006
## Gender 0.039 -0.797 2.863 0.033 0.244 2.176 -2.029 0.112 1.852
## BMI_obs 0.196 -1.936 -5.541 -2.731 4.033 -1.136 2.981 0.533 2.328
## Age 1.091 0.818 -3.884 0.289 3.542 -5.274 -3.101 4.897 0.351
## BB OLH MS SAR Gender BMI_bs Age
## ESR
## SU
## BAH
## SBJ
## HT
## PT
## SR
## JS
## FBT
## BB 1.217
## OLH 2.907 1.880
## MS 0.431 1.599 1.126
## SAR -1.083 -0.577 1.177 0.006
## Gender -2.404 1.373 0.108 -0.007 0.000
## BMI_obs -1.611 1.105 1.023 -0.035 0.030 0.088
## Age 2.005 3.669 3.284 -0.150 0.135 0.682 3.736
mean(abs(residuals))
## [1] 1.580138
p = 14
Given \((p(p+1)/2 - p) = 300\) elements in the lower diagonal,
(p*(p+1)/2 - p)*.05
## [1] 4.55
of them can be significant at the \(\alpha\) = .05 level.
Diag = diagonal, * = residual significant at the \(\alpha\) = .05 level.
ifelse(round(residuals, 3) == 0, "Dg", ifelse(residuals > 1.96, "*", "-"))
## ESR SU BAH SBJ HT PT SR JS FBT BB OLH MS SAR Gender BMI_obs
## ESR "-" "-" "*" "-" "-" "-" "-" "-" "-" "-" "-" "-" "-" "-" "-"
## SU "-" "-" "*" "*" "-" "-" "-" "*" "-" "-" "-" "-" "-" "-" "-"
## BAH "*" "*" "-" "*" "-" "-" "-" "-" "-" "-" "-" "-" "*" "*" "-"
## SBJ "-" "*" "*" "-" "-" "-" "-" "*" "-" "-" "*" "-" "-" "-" "-"
## HT "-" "-" "-" "-" "-" "-" "-" "*" "-" "-" "*" "-" "-" "-" "*"
## PT "-" "-" "-" "-" "-" "-" "*" "-" "-" "-" "-" "-" "-" "*" "-"
## SR "-" "-" "-" "-" "-" "*" "-" "-" "*" "-" "-" "-" "-" "-" "*"
## JS "-" "*" "-" "*" "*" "-" "-" "*" "-" "-" "*" "*" "-" "-" "-"
## FBT "-" "-" "-" "-" "-" "-" "*" "-" "-" "-" "-" "-" "-" "-" "*"
## BB "-" "-" "-" "-" "-" "-" "-" "-" "-" "-" "*" "-" "-" "-" "-"
## OLH "-" "-" "-" "*" "*" "-" "-" "*" "-" "*" "-" "-" "-" "-" "-"
## MS "-" "-" "-" "-" "-" "-" "-" "*" "-" "-" "-" "-" "-" "-" "-"
## SAR "-" "-" "*" "-" "-" "-" "-" "-" "-" "-" "-" "-" "-" "-" "-"
## Gender "-" "-" "*" "-" "-" "*" "-" "-" "-" "-" "-" "-" "-" "Dg" "-"
## BMI_obs "-" "-" "-" "-" "*" "-" "*" "-" "*" "-" "-" "-" "-" "-" "-"
## Age "-" "-" "-" "-" "*" "-" "-" "*" "-" "*" "*" "*" "-" "-" "-"
## Age
## ESR "-"
## SU "-"
## BAH "-"
## SBJ "-"
## HT "*"
## PT "-"
## SR "-"
## JS "*"
## FBT "-"
## BB "*"
## OLH "*"
## MS "*"
## SAR "-"
## Gender "-"
## BMI_obs "-"
## Age "*"
Minimum value of modification index (currently set at 10).
min.value <- 10
mi <- modindices(fitted.model, standardized = TRUE,
free.remove = TRUE, minimum.value = min.value)
mi[mi$op == "=~",]
## lhs op rhs mi mi.scaled epc sepc.lv sepc.all
## 95 Endurance =~ SBJ 11.333 11.325 3.776 4.133 0.186
## 96 Endurance =~ HT 11.318 11.310 -0.830 -0.908 -0.191
## 98 Endurance =~ SR 53.377 53.340 -0.798 -0.873 -0.341
## 99 Endurance =~ JS 14.414 14.404 -3.892 -4.259 -0.299
## 106 Endurance =~ BMI_obs 46.971 46.938 42.432 46.439 16.285
## 110 Strength =~ SR 28.703 28.683 -0.514 -0.820 -0.320
## 118 Strength =~ BMI_obs 46.951 46.918 8.418 13.418 4.705
## 131 Speed =~ BMI_obs 46.948 46.915 -8.303 -11.616 -4.073
## 132 Speed =~ Age 46.953 46.920 0.324 0.453 0.442
## 139 Coordination =~ SR 14.582 14.571 -0.859 -1.345 -0.525
## 140 Coordination =~ JS 17.387 17.375 10.716 16.776 1.179
## 143 Coordination =~ BMI_obs 46.943 46.910 -19.795 -30.988 -10.867
## 144 Coordination =~ Age 43.973 43.942 0.407 0.637 0.621
## 149 Flexibility =~ HT 15.696 15.685 -0.836 -0.848 -0.179
## 158 Flexibility =~ BMI_obs 46.979 46.946 -145.970 -147.944 -51.880
## 169 SEX =~ BB 13.956 13.946 -2.208 -2.208 -0.155
## 170 SEX =~ OLH 10.132 10.125 2.109 2.109 0.130
## 177 BMI =~ BAH 37.276 37.250 -3.428 -3.428 -0.291
## 178 BMI =~ SBJ 25.249 25.231 -4.909 -4.909 -0.221
## 179 BMI =~ HT 69.809 69.760 1.789 1.789 0.377
## 181 BMI =~ SR 13.697 13.688 0.426 0.426 0.166
## 184 BMI =~ BB 10.124 10.117 -1.882 -1.882 -0.132
## 189 BMI =~ Age 44.482 44.451 2.974 2.974 2.899
## 192 AGE =~ BAH 43.059 43.029 -5.508 -5.508 -0.468
## 193 AGE =~ SBJ 13.308 13.299 -5.715 -5.715 -0.258
## 194 AGE =~ HT 32.834 32.811 1.985 1.985 0.418
## 195 AGE =~ PT 31.299 31.277 -1.463 -1.463 -0.371
## 197 AGE =~ JS 17.947 17.934 4.317 4.317 0.303
## 204 AGE =~ BMI_obs 46.948 46.915 9.651 9.651 3.384
## sepc.nox
## 95 0.186
## 96 -0.191
## 98 -0.341
## 99 -0.299
## 106 16.285
## 110 -0.320
## 118 4.705
## 131 -4.073
## 132 0.442
## 139 -0.525
## 140 1.179
## 143 -10.867
## 144 0.621
## 149 -0.179
## 158 -51.880
## 169 -0.155
## 170 0.130
## 177 -0.291
## 178 -0.221
## 179 0.377
## 181 0.166
## 184 -0.132
## 189 2.899
## 192 -0.468
## 193 -0.258
## 194 0.418
## 195 -0.371
## 197 0.303
## 204 3.384