Data preparation

Required R libraries

library(lavaan, quietly = TRUE, warn.conflicts = FALSE)
library(semPlot, quietly = TRUE, warn.conflicts = FALSE)
library(dplyr, quietly = TRUE, warn.conflicts = FALSE)
library(psych, quietly = TRUE, warn.conflicts = FALSE)
library(ICC, quietly = TRUE, warn.conflicts = FALSE)
library(Amelia, quietly = TRUE, warn.conflicts = FALSE)
library(BaylorEdPsych, quietly = TRUE, warn.conflicts = FALSE)
library(ggplot2)
library(reshape2)

Read in the datafile

#rm(list = ls())
setwd(dir = "~/OneDrive/MANUSCRIPTS/2017 MP CFA")
data <- read.csv(file = "data.csv", header = TRUE, sep = ";")
#View(data)

Percentage of missing data

paste(round(sum(is.na(data))/prod(dim(data))*100, 5), "%", sep = "")
## [1] "0%"

Demographics

Sample size

nrow(data)
## [1] 436

Gender

1 = female; 2 = male

table(data$Gender)
## 
##   1   2 
## 222 214

Age

table(data$Age)
## 
##   7   8   9  10 
## 104 113 109 110

Mean age??

Descriptive statistics

describe(data[,8:21], na.rm = TRUE, skew = TRUE, ranges = TRUE, type = 2, trim = 0)
##     vars   n   mean    sd median trimmed   mad   min    max  range  skew
## FBT    1 436   8.19  4.37   7.50    8.19  5.19  1.00  24.00  23.00  0.75
## PT     2 436  19.64  4.00  19.12   19.64  3.83 12.30  32.65  20.35  0.79
## SAR    3 436  21.44  5.85  21.00   21.44  5.93  3.00  35.00  32.00  0.12
## SBJ    4 436 123.86 22.59 123.50  123.86 21.50 63.00 186.00 123.00  0.15
## HT     5 436  16.62  4.84  16.00   16.62  4.45  7.00  35.00  28.00  0.44
## SU     6 436  16.67  5.31  17.00   16.67  4.45  0.00  34.00  34.00 -0.09
## BAH    7 436  15.95 11.80  12.85   15.95 10.07  0.00  69.18  69.18  1.37
## SR     8 436  24.28  2.60  24.18   24.28  2.52 18.23  33.90  15.67  0.44
## ESR    9 436  22.24  9.13  22.00   22.24 10.38  5.00  50.00  45.00  0.37
## BB    10 436  44.61 14.76  44.00   44.61 17.79  5.00  72.00  67.00 -0.09
## OLH   11 436  49.89 17.09  51.00   49.89 20.02  8.00  78.00  70.00 -0.22
## JS    12 436  49.53 15.30  50.50   49.53 17.05 17.00  89.00  72.00 -0.01
## MS    13 436  39.79  9.28  39.00   39.79  8.90 20.00  76.00  56.00  0.53
## MQ    14 436  96.38 14.48  96.00   96.38 14.83 54.00 144.00  90.00  0.11
##     kurtosis   se
## FBT     0.57 0.21
## PT      0.42 0.19
## SAR    -0.22 0.28
## SBJ    -0.05 1.08
## HT      0.44 0.23
## SU     -0.07 0.25
## BAH     2.13 0.57
## SR      0.47 0.12
## ESR    -0.22 0.44
## BB     -0.75 0.71
## OLH    -0.81 0.82
## JS     -0.72 0.73
## MS      0.34 0.44
## MQ      0.30 0.69

Matrix of zero-order Pearsons’ \(r\) correlations

cor.mat <- cor(data[,8:21], method = "pearson")
round(cor.mat, 2)
##       FBT    PT   SAR   SBJ    HT    SU   BAH    SR   ESR    BB   OLH
## FBT  1.00  0.14  0.01 -0.16 -0.13 -0.17 -0.12  0.17 -0.18 -0.17 -0.08
## PT   0.14  1.00 -0.01 -0.21 -0.31 -0.15 -0.04  0.32 -0.21 -0.27 -0.32
## SAR  0.01 -0.01  1.00  0.04 -0.13  0.02  0.08 -0.06 -0.07 -0.09 -0.07
## SBJ -0.16 -0.21  0.04  1.00  0.46  0.50  0.24 -0.35  0.44  0.27  0.39
## HT  -0.13 -0.31 -0.13  0.46  1.00  0.37  0.02 -0.19  0.33  0.26  0.40
## SU  -0.17 -0.15  0.02  0.50  0.37  1.00  0.22 -0.30  0.28  0.26  0.30
## BAH -0.12 -0.04  0.08  0.24  0.02  0.22  1.00 -0.13  0.20  0.05  0.06
## SR   0.17  0.32 -0.06 -0.35 -0.19 -0.30 -0.13  1.00 -0.42 -0.30 -0.29
## ESR -0.18 -0.21 -0.07  0.44  0.33  0.28  0.20 -0.42  1.00  0.25  0.31
## BB  -0.17 -0.27 -0.09  0.27  0.26  0.26  0.05 -0.30  0.25  1.00  0.61
## OLH -0.08 -0.32 -0.07  0.39  0.40  0.30  0.06 -0.29  0.31  0.61  1.00
## JS  -0.13 -0.41 -0.05  0.37  0.41  0.32 -0.02 -0.37  0.28  0.56  0.70
## MS  -0.13 -0.30  0.01  0.34  0.36  0.23  0.00 -0.27  0.22  0.45  0.60
## MQ  -0.14 -0.16 -0.05  0.27  0.17  0.18  0.11 -0.24  0.23  0.69  0.73
##        JS    MS    MQ
## FBT -0.13 -0.13 -0.14
## PT  -0.41 -0.30 -0.16
## SAR -0.05  0.01 -0.05
## SBJ  0.37  0.34  0.27
## HT   0.41  0.36  0.17
## SU   0.32  0.23  0.18
## BAH -0.02  0.00  0.11
## SR  -0.37 -0.27 -0.24
## ESR  0.28  0.22  0.23
## BB   0.56  0.45  0.69
## OLH  0.70  0.60  0.73
## JS   1.00  0.68  0.65
## MS   0.68  1.00  0.73
## MQ   0.65  0.73  1.00

Mean correlation

cor.mat.low <- cor.mat[lower.tri(cor.mat)]
mean(abs(cor.mat.low))
## [1] 0.2577828

Distribution plots

df_melt <- melt(data[,8:21])
## No id variables; using all as measure variables
hist(data[,8:21], rugs = TRUE)

plot(df_melt)

Confirmatory factor analysis

Model specification

model <- '
Endurance =~ ESR
Strength =~ SU + BAH + SBJ + HT
Speed =~ PT + SR + JS
Coordination =~ FBT + BB + OLH + MS
Flexibility =~ SAR
SEX =~ Gender
BMI =~ BMI_obs
AGE =~ Age
Endurance ~ BMI + SEX + AGE
Strength ~ BMI + SEX + AGE
Speed ~ BMI + SEX + 1*AGE
Coordination ~ BMI + SEX + AGE
Flexibility ~ BMI + SEX + AGE
AGE ~~ 0*SEX
'

#model <- '
#Endurance =~ ESR
#Strength =~ SU + BAH + SBJ + HT
#Speed =~ PT + SR + JS
#Coordination =~ FBT + BB + OLH + MS
#Flexibility =~ SAR
#MPA =~ Endurance + Strength + Speed + Coordination + Flexibility

Model fitting

According to Muthén, 1984

fitted.model <- cfa(model = model, data = data, std.lv = TRUE, mimic = "Mplus", std.ov = FALSE, estimator = "MLR", orthogonal = FALSE, bootstrap = 5000)
## Warning in lav_data_full(data = data, group = group, cluster = cluster, :
## lavaan WARNING: some observed variances are (at least) a factor 1000 times
## larger than others; use varTable(fit) to investigate

Power analysis

Power analysis for the exact fit test (based on the RMSEA distribution). Statistical power for the detection of a misspecified model (RMSEA > .08).

df <- fitted.model@test[[1]]$df
alfa <- .05
n <- nrow(data)
rmsea0 <- .05           # RMSEA under H0
rmseaa <- .08           # RMSEA under H1

ncp0 <- (n-1)*df*rmsea0**2 ;
ncpa <-(n-1)*df*rmseaa**2 ;
if(rmsea0 < rmseaa) {
  cval <- qchisq(1-alfa,df=df,ncp=ncp0)
  sila.rmsea <- 1 - pchisq(cval,df=df,ncp=ncpa)
} else {
  cval <- qchisq(alfa,df=df,ncp=ncp0)
  sila.rmsea <- pchisq(cval,df=df,ncp=ncpa)
}
rm(ncp0, ncpa, cval)
print(round(sila.rmsea,10))
## [1] 0.9996337

Model test, parameter estimates

Test of the model, estimates of free parameters (factor loadings)

summary(fitted.model, standardized = TRUE, rsquare = TRUE)
## lavaan (0.5-23.1097) converged normally after 148 iterations
## 
##   Number of observations                           436
## 
##   Number of missing patterns                         1
## 
##   Estimator                                         ML      Robust
##   Minimum Function Test Statistic              494.699     494.350
##   Degrees of freedom                                83          83
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.001
##     for the Yuan-Bentler correction (Mplus variant)
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                   Robust.huber.white
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Endurance =~                                                          
##     ESR               8.256    0.281   29.348    0.000    9.035    1.000
##   Strength =~                                                           
##     SU                1.778    0.300    5.918    0.000    2.834    0.541
##     BAH               1.128    0.624    1.809    0.070    1.799    0.153
##     SBJ               9.426    1.434    6.573    0.000   15.025    0.678
##     HT                2.148    0.168   12.751    0.000    3.424    0.722
##   Speed =~                                                              
##     PT               -1.175    0.127   -9.222    0.000   -1.643   -0.417
##     SR               -0.673    0.083   -8.112    0.000   -0.942   -0.367
##     JS                9.754    0.371   26.262    0.000   13.645    0.959
##   Coordination =~                                                       
##     FBT              -0.417    0.143   -2.905    0.004   -0.652   -0.150
##     BB                5.816    0.531   10.958    0.000    9.104    0.639
##     OLH               8.279    0.625   13.248    0.000   12.961    0.800
##     MS                4.114    0.333   12.346    0.000    6.441    0.725
##   Flexibility =~                                                        
##     SAR               5.765    0.181   31.817    0.000    5.843    1.000
##   SEX =~                                                                
##     Gender            0.500    0.000 1137.800    0.000    0.500    1.000
##   BMI =~                                                                
##     BMI_obs           2.852    0.117   24.357    0.000    2.852    1.000
##   AGE =~                                                                
##     Age               1.026    0.019   53.351    0.000    1.026    1.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Endurance ~                                                           
##     BMI              -0.290    0.051   -5.623    0.000   -0.265   -0.265
##     SEX               0.175    0.047    3.691    0.000    0.160    0.160
##     AGE               0.351    0.050    7.005    0.000    0.321    0.321
##   Strength ~                                                            
##     BMI              -0.117    0.112   -1.046    0.295   -0.074   -0.074
##     SEX               0.607    0.094    6.456    0.000    0.381    0.381
##     AGE               1.099    0.147    7.473    0.000    0.690    0.690
##   Speed ~                                                               
##     BMI              -0.187    0.049   -3.853    0.000   -0.134   -0.134
##     SEX              -0.002    0.046   -0.049    0.961   -0.002   -0.002
##     AGE               1.000                               0.715    0.715
##   Coordination ~                                                        
##     BMI              -0.471    0.073   -6.417    0.000   -0.301   -0.301
##     SEX               0.208    0.065    3.212    0.001    0.133    0.133
##     AGE               1.189    0.119   10.017    0.000    0.760    0.760
##   Flexibility ~                                                         
##     BMI               0.048    0.052    0.917    0.359    0.047    0.047
##     SEX              -0.150    0.048   -3.133    0.002   -0.148   -0.148
##     AGE              -0.056    0.047   -1.176    0.240   -0.055   -0.055
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SEX ~~                                                                
##     AGE               0.000                               0.000    0.000
##     BMI              -0.023    0.047   -0.491    0.624   -0.023   -0.023
##   BMI ~~                                                                
##     AGE               0.208    0.041    5.016    0.000    0.208    0.208
##  .Endurance ~~                                                          
##    .Strength          0.458    0.068    6.699    0.000    0.458    0.458
##    .Speed             0.057    0.057    0.993    0.321    0.057    0.057
##    .Coordination      0.074    0.058    1.288    0.198    0.074    0.074
##    .Flexibility      -0.020    0.051   -0.390    0.697   -0.020   -0.020
##  .Strength ~~                                                           
##    .Speed            -0.022    0.091   -0.239    0.811   -0.022   -0.022
##    .Coordination      0.084    0.103    0.815    0.415    0.084    0.084
##    .Flexibility       0.066    0.076    0.867    0.386    0.066    0.066
##  .Speed ~~                                                              
##    .Coordination      0.775    0.072   10.827    0.000    0.775    0.775
##    .Flexibility       0.005    0.063    0.076    0.940    0.005    0.005
##  .Coordination ~~                                                       
##    .Flexibility       0.013    0.065    0.192    0.847    0.013    0.013
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ESR              22.243    0.437   50.953    0.000   22.243    2.462
##    .SU               16.674    0.254   65.691    0.000   16.674    3.182
##    .BAH              15.946    0.564   28.249    0.000   15.946    1.354
##    .SBJ             123.865    1.081  114.606    0.000  123.865    5.586
##    .HT               16.619    0.232   71.724    0.000   16.619    3.504
##    .PT               19.638    0.191  102.660    0.000   19.638    4.988
##    .SR               24.276    0.124  195.507    0.000   24.276    9.468
##    .JS               49.532    0.732   67.671    0.000   49.532    3.481
##    .FBT               8.186    0.209   39.151    0.000    8.186    1.879
##    .BB               44.608    0.706   63.192    0.000   44.608    3.130
##    .OLH              49.892    0.817   61.044    0.000   49.892    3.078
##    .MS               39.791    0.444   89.650    0.000   39.791    4.481
##    .SAR              21.435    0.280   76.593    0.000   21.435    3.669
##    .Gender            1.491    0.024   62.269    0.000    1.491    2.982
##    .BMI_obs          16.779    0.137  122.415    0.000   16.779    5.884
##    .Age               8.516    0.053  160.245    0.000    8.516    8.301
##    .Endurance         0.000                               0.000    0.000
##    .Strength          0.000                               0.000    0.000
##    .Speed             0.000                               0.000    0.000
##    .Coordination      0.000                               0.000    0.000
##    .Flexibility       0.000                               0.000    0.000
##     SEX               0.000                               0.000    0.000
##     BMI               0.000                               0.000    0.000
##     AGE               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ESR               0.000                               0.000    0.000
##    .SU               19.436    2.135    9.105    0.000   19.436    0.708
##    .BAH             135.449   12.899   10.501    0.000  135.449    0.977
##    .SBJ             266.001   31.960    8.323    0.000  266.001    0.541
##    .HT               10.771    1.588    6.784    0.000   10.771    0.479
##    .PT               12.802    1.083   11.824    0.000   12.802    0.826
##    .SR                5.688    0.463   12.291    0.000    5.688    0.865
##    .JS               16.305    9.672    1.686    0.092   16.305    0.081
##    .FBT              18.562    1.384   13.408    0.000   18.562    0.978
##    .BB              120.280    9.488   12.678    0.000  120.280    0.592
##    .OLH              94.685   10.293    9.199    0.000   94.685    0.360
##    .MS               37.353    3.397   10.995    0.000   37.353    0.474
##    .SAR               0.000                               0.000    0.000
##    .Gender            0.000                               0.000    0.000
##    .BMI_obs           0.000                               0.000    0.000
##    .Age               0.000                               0.000    0.000
##    .Endurance         1.000                               0.835    0.835
##    .Strength          1.000                               0.394    0.394
##    .Speed             1.000                               0.511    0.511
##    .Coordination      1.000                               0.408    0.408
##    .Flexibility       1.000                               0.973    0.973
##     SEX               1.000                               1.000    1.000
##     BMI               1.000                               1.000    1.000
##     AGE               1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     ESR               1.000
##     SU                0.292
##     BAH               0.023
##     SBJ               0.459
##     HT                0.521
##     PT                0.174
##     SR                0.135
##     JS                0.919
##     FBT               0.022
##     BB                0.408
##     OLH               0.640
##     MS                0.526
##     SAR               1.000
##     Gender            1.000
##     BMI_obs           1.000
##     Age               1.000
##     Endurance         0.165
##     Strength          0.606
##     Speed             0.489
##     Coordination      0.592
##     Flexibility       0.027

Mean factor loading

mean(inspect(fitted.model,what="std")$lambda[inspect(fitted.model,what="std")$lambda > .0])
## [1] 0.7858236

Approximate fit indices

Note the .robust indices

fitMeasures(fitted.model)
##                          npar                          fmin 
##                        69.000                         0.567 
##                         chisq                            df 
##                       494.699                        83.000 
##                        pvalue                  chisq.scaled 
##                         0.000                       494.350 
##                     df.scaled                 pvalue.scaled 
##                        83.000                         0.000 
##          chisq.scaling.factor                baseline.chisq 
##                         1.001                      2609.243 
##                   baseline.df               baseline.pvalue 
##                       120.000                         0.000 
##         baseline.chisq.scaled            baseline.df.scaled 
##                      2494.934                       120.000 
##        baseline.pvalue.scaled baseline.chisq.scaling.factor 
##                         0.000                         1.046 
##                           cfi                           tli 
##                         0.835                         0.761 
##                          nnfi                           rfi 
##                         0.761                         0.726 
##                           nfi                          pnfi 
##                         0.810                         0.561 
##                           ifi                           rni 
##                         0.837                         0.835 
##                    cfi.scaled                    tli.scaled 
##                         0.827                         0.750 
##                    cfi.robust                    tli.robust 
##                         0.834                         0.760 
##                   nnfi.scaled                   nnfi.robust 
##                         0.750                         0.760 
##                    rfi.scaled                    nfi.scaled 
##                         0.714                         0.802 
##                    ifi.scaled                    rni.scaled 
##                         0.802                         0.835 
##                    rni.robust                          logl 
##                         0.834                    -20856.397 
##             unrestricted.logl                           aic 
##                    -20609.047                     41850.793 
##                           bic                        ntotal 
##                     42132.150                       436.000 
##                          bic2             scaling.factor.h1 
##                     41913.181                         1.033 
##             scaling.factor.h0                         rmsea 
##                         1.071                         0.107 
##                rmsea.ci.lower                rmsea.ci.upper 
##                         0.098                         0.116 
##                  rmsea.pvalue                  rmsea.scaled 
##                         0.000                         0.107 
##         rmsea.ci.lower.scaled         rmsea.ci.upper.scaled 
##                         0.098                         0.116 
##           rmsea.pvalue.scaled                  rmsea.robust 
##                         0.000                         0.107 
##         rmsea.ci.lower.robust         rmsea.ci.upper.robust 
##                         0.098                         0.116 
##           rmsea.pvalue.robust                           rmr 
##                            NA                         9.411 
##                    rmr_nomean                          srmr 
##                         9.411                         0.103 
##                  srmr_bentler           srmr_bentler_nomean 
##                         0.091                         0.096 
##                   srmr_bollen            srmr_bollen_nomean 
##                         0.101                         0.086 
##                    srmr_mplus             srmr_mplus_nomean 
##                         0.103                         0.088 
##                         cn_05                         cn_01 
##                        93.777                       103.127 
##                           gfi                          agfi 
##                         0.996                         0.993 
##                          pgfi                           mfi 
##                         0.544                         0.624 
##                          ecvi 
##                            NA

Diagram

Zatial iba narychlo vygenerovany, neskor upravim.

semPaths(fitted.model, style = "mx", pastel = TRUE,
         edge.label.cex = 0.5, sizeLat = 5, nCharNodes = 0,
         nDigits = 2, "Standardized", intercepts = FALSE,
         residuals = TRUE, exoVar = FALSE, fade = TRUE,
         groups = "latents", what = "path")

Exact test of the model indicates the presence of a model misspecification. Apart from approximate fit indices, it was also necessary to inspect local sources of model misfit based on the matrix of residual correlations.

Local fit

Matrix of residual correlations

residuals <- residuals(fitted.model, type = "normalized")$cov
residuals
##         ESR    SU     BAH    SBJ    HT     PT     SR     JS     FBT   
## ESR      0.275                                                        
## SU       0.031  0.335                                                 
## BAH      2.193  2.765  0.019                                          
## SBJ      1.905  2.883  2.603  0.517                                   
## HT      -0.780 -0.152 -1.658 -0.181  0.522                            
## PT      -2.104 -1.106 -0.191 -1.683 -3.789  0.381                     
## SR      -7.398 -4.454 -1.885 -4.420 -1.569  3.404  0.294              
## JS       1.265  2.138 -1.743  1.970  2.507 -0.906 -0.865  2.467       
## FBT     -2.793 -2.497 -2.425 -1.939 -1.367  1.702  2.390 -0.348  0.050
## BB       0.986  1.502 -0.063  0.576  0.110 -1.003 -2.210  1.819 -1.757
## OLH      1.438  1.486 -0.181  2.231  1.988 -1.008 -1.022  2.364  0.790
## MS      -0.027  0.229 -1.264  1.459  1.447 -1.232 -0.997  2.732 -0.551
## SAR     -0.053  1.102  2.103  1.534 -2.122 -0.409 -1.465 -0.326  0.006
## Gender   0.039 -0.797  2.863  0.033  0.244  2.176 -2.029  0.112  1.852
## BMI_obs  0.196 -1.936 -5.541 -2.731  4.033 -1.136  2.981  0.533  2.328
## Age      1.091  0.818 -3.884  0.289  3.542 -5.274 -3.101  4.897  0.351
##         BB     OLH    MS     SAR    Gender BMI_bs Age   
## ESR                                                     
## SU                                                      
## BAH                                                     
## SBJ                                                     
## HT                                                      
## PT                                                      
## SR                                                      
## JS                                                      
## FBT                                                     
## BB       1.217                                          
## OLH      2.907  1.880                                   
## MS       0.431  1.599  1.126                            
## SAR     -1.083 -0.577  1.177  0.006                     
## Gender  -2.404  1.373  0.108 -0.007  0.000              
## BMI_obs -1.611  1.105  1.023 -0.035  0.030  0.088       
## Age      2.005  3.669  3.284 -0.150  0.135  0.682  3.736

Mean residual correlation

mean(abs(residuals))
## [1] 1.580138

Number of observed variables

p = 14

Given \((p(p+1)/2 - p) = 300\) elements in the lower diagonal,

(p*(p+1)/2 - p)*.05
## [1] 4.55

of them can be significant at the \(\alpha\) = .05 level.

Significance of the residuals

Diag = diagonal, * = residual significant at the \(\alpha\) = .05 level.

ifelse(round(residuals, 3) == 0, "Dg", ifelse(residuals > 1.96, "*", "-"))
##         ESR SU  BAH SBJ HT  PT  SR  JS  FBT BB  OLH MS  SAR Gender BMI_obs
## ESR     "-" "-" "*" "-" "-" "-" "-" "-" "-" "-" "-" "-" "-" "-"    "-"    
## SU      "-" "-" "*" "*" "-" "-" "-" "*" "-" "-" "-" "-" "-" "-"    "-"    
## BAH     "*" "*" "-" "*" "-" "-" "-" "-" "-" "-" "-" "-" "*" "*"    "-"    
## SBJ     "-" "*" "*" "-" "-" "-" "-" "*" "-" "-" "*" "-" "-" "-"    "-"    
## HT      "-" "-" "-" "-" "-" "-" "-" "*" "-" "-" "*" "-" "-" "-"    "*"    
## PT      "-" "-" "-" "-" "-" "-" "*" "-" "-" "-" "-" "-" "-" "*"    "-"    
## SR      "-" "-" "-" "-" "-" "*" "-" "-" "*" "-" "-" "-" "-" "-"    "*"    
## JS      "-" "*" "-" "*" "*" "-" "-" "*" "-" "-" "*" "*" "-" "-"    "-"    
## FBT     "-" "-" "-" "-" "-" "-" "*" "-" "-" "-" "-" "-" "-" "-"    "*"    
## BB      "-" "-" "-" "-" "-" "-" "-" "-" "-" "-" "*" "-" "-" "-"    "-"    
## OLH     "-" "-" "-" "*" "*" "-" "-" "*" "-" "*" "-" "-" "-" "-"    "-"    
## MS      "-" "-" "-" "-" "-" "-" "-" "*" "-" "-" "-" "-" "-" "-"    "-"    
## SAR     "-" "-" "*" "-" "-" "-" "-" "-" "-" "-" "-" "-" "-" "-"    "-"    
## Gender  "-" "-" "*" "-" "-" "*" "-" "-" "-" "-" "-" "-" "-" "Dg"   "-"    
## BMI_obs "-" "-" "-" "-" "*" "-" "*" "-" "*" "-" "-" "-" "-" "-"    "-"    
## Age     "-" "-" "-" "-" "*" "-" "-" "*" "-" "*" "*" "*" "-" "-"    "-"    
##         Age
## ESR     "-"
## SU      "-"
## BAH     "-"
## SBJ     "-"
## HT      "*"
## PT      "-"
## SR      "-"
## JS      "*"
## FBT     "-"
## BB      "*"
## OLH     "*"
## MS      "*"
## SAR     "-"
## Gender  "-"
## BMI_obs "-"
## Age     "*"

Modification indices

Minimum value of modification index (currently set at 10).

min.value <- 10
mi <- modindices(fitted.model, standardized = TRUE,
                 free.remove = TRUE, minimum.value = min.value)
mi[mi$op == "=~",]
##              lhs op     rhs     mi mi.scaled      epc  sepc.lv sepc.all
## 95     Endurance =~     SBJ 11.333    11.325    3.776    4.133    0.186
## 96     Endurance =~      HT 11.318    11.310   -0.830   -0.908   -0.191
## 98     Endurance =~      SR 53.377    53.340   -0.798   -0.873   -0.341
## 99     Endurance =~      JS 14.414    14.404   -3.892   -4.259   -0.299
## 106    Endurance =~ BMI_obs 46.971    46.938   42.432   46.439   16.285
## 110     Strength =~      SR 28.703    28.683   -0.514   -0.820   -0.320
## 118     Strength =~ BMI_obs 46.951    46.918    8.418   13.418    4.705
## 131        Speed =~ BMI_obs 46.948    46.915   -8.303  -11.616   -4.073
## 132        Speed =~     Age 46.953    46.920    0.324    0.453    0.442
## 139 Coordination =~      SR 14.582    14.571   -0.859   -1.345   -0.525
## 140 Coordination =~      JS 17.387    17.375   10.716   16.776    1.179
## 143 Coordination =~ BMI_obs 46.943    46.910  -19.795  -30.988  -10.867
## 144 Coordination =~     Age 43.973    43.942    0.407    0.637    0.621
## 149  Flexibility =~      HT 15.696    15.685   -0.836   -0.848   -0.179
## 158  Flexibility =~ BMI_obs 46.979    46.946 -145.970 -147.944  -51.880
## 169          SEX =~      BB 13.956    13.946   -2.208   -2.208   -0.155
## 170          SEX =~     OLH 10.132    10.125    2.109    2.109    0.130
## 177          BMI =~     BAH 37.276    37.250   -3.428   -3.428   -0.291
## 178          BMI =~     SBJ 25.249    25.231   -4.909   -4.909   -0.221
## 179          BMI =~      HT 69.809    69.760    1.789    1.789    0.377
## 181          BMI =~      SR 13.697    13.688    0.426    0.426    0.166
## 184          BMI =~      BB 10.124    10.117   -1.882   -1.882   -0.132
## 189          BMI =~     Age 44.482    44.451    2.974    2.974    2.899
## 192          AGE =~     BAH 43.059    43.029   -5.508   -5.508   -0.468
## 193          AGE =~     SBJ 13.308    13.299   -5.715   -5.715   -0.258
## 194          AGE =~      HT 32.834    32.811    1.985    1.985    0.418
## 195          AGE =~      PT 31.299    31.277   -1.463   -1.463   -0.371
## 197          AGE =~      JS 17.947    17.934    4.317    4.317    0.303
## 204          AGE =~ BMI_obs 46.948    46.915    9.651    9.651    3.384
##     sepc.nox
## 95     0.186
## 96    -0.191
## 98    -0.341
## 99    -0.299
## 106   16.285
## 110   -0.320
## 118    4.705
## 131   -4.073
## 132    0.442
## 139   -0.525
## 140    1.179
## 143  -10.867
## 144    0.621
## 149   -0.179
## 158  -51.880
## 169   -0.155
## 170    0.130
## 177   -0.291
## 178   -0.221
## 179    0.377
## 181    0.166
## 184   -0.132
## 189    2.899
## 192   -0.468
## 193   -0.258
## 194    0.418
## 195   -0.371
## 197    0.303
## 204    3.384