1 read data & recode variables

library(foreign)
## Warning: package 'foreign' was built under R version 3.2.5
r=read.dta("C:/Users/BINH THANG/Dropbox/Korea/STudy/Thesis/data management/DataR/dataR3.dta")
r1 <- subset(r)

attach(r1)

r1$wtp[r1$cost_inc >=1] <- 1
r1$wtp[is.na(r1$cost_inc )] <- 0




r1$b16a[b16a == 5] <- 0


r1$freeEn[c9==1] <- 1
r1$freeEn[c9>1] <- 0




r1$h1[h1== 1] <- 1
r1$h1[h1== 2] <- 0


r1$c7ad[c7== 2] <- 0
r1$c7ad[c7== 1] <- 1
r1$c7ad[is.na(r1$c7)] <- 0


r1$ant[c5==1& c5==2 & c5==7 & c5==8 & c5==9] <- 0
r1$ant[c5==3|c5==4|c5==5] <- 1
r1$ant[is.na(r1$c5)] <- 0


r1$p1=r1$label1+r1$freeEn+r1$ant+r1$c7ad

r1$p[r1$p1==0] <- 0
r1$p[r1$p1==1] <- 1
r1$p[r1$p1>=2] <- 2

attach(r)
## The following objects are masked from r1:
## 
##     a1, advice, advice1, ag, age_group, anticam, anticam2, b1,
##     b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, policy,
##     policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4
newdata2=r1
attach(newdata2 )
## The following objects are masked from r:
## 
##     a1, advice, advice1, ag, age_group, anticam, anticam2, b1,
##     b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, policy,
##     policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4
## 
## The following objects are masked from r1:
## 
##     a1, advice, advice1, ag, age_group, anticam, anticam2, b1,
##     b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, policy,
##     policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4

1.1 define varibles as catergory

newdata2$wtp=factor(newdata2$wtp)

newdata2$age_group=as.factor(newdata2$age_group)
newdata2$educ2=as.factor(newdata2$educ2)

newdata2$h1=as.factor(newdata2$h1)

newdata2$d1a=as.factor(newdata2$d1a)


newdata2$selfhealth=as.factor(newdata2$selfhealth)

newdata2$b18a=as.factor(newdata2$b18a)

newdata2$b16a=as.factor(newdata2$b16a)

newdata2$b6a=as.factor(newdata2$b6a)

newdata2$smostt=as.factor(newdata2$smostt)

newdata2$ter_in=as.factor(newdata2$ter_in)

newdata2$group_age1=as.factor(newdata2$group_age1)

newdata2$label1=as.factor(newdata2$label1)
newdata2$freeEn=as.factor(newdata2$freeEn)
newdata2$c7ad=as.factor(newdata2$c7ad)
newdata2$ant=as.factor(newdata2$ant)

newdata2$p=as.factor(newdata2$p)

2 general descriptive

library("psych", lib.loc="~/R/win-library/3.2")
## Warning: package 'psych' was built under R version 3.2.5
a=describe(newdata2$cost_inc)
library(knitr)
## Warning: package 'knitr' was built under R version 3.2.5
kable(a, caption = "A knitr kable.")
A knitr kable.
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 461 79438.18 55255.2 62000 70410.57 32617.2 17000 422000 405000 2.496445 8.829917 2573.491

2.0.1 AGE

describe.by(newdata2$cost_inc, newdata2$age_group)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`group18-29`
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 191 82424.08 52523.71  70000 75065.36 41512.8 22000 410000 388000
##    skew kurtosis      se
## X1 2.35     9.01 3800.48
## 
## $gr3039
##    vars  n     mean       sd median trimmed     mad   min    max  range
## X1    1 76 88855.26 58710.07  73000   78500 41512.8 23000 322000 299000
##    skew kurtosis      se
## X1 1.77      3.3 6734.51
## 
## $gr4049
##    vars  n     mean       sd median  trimmed     mad   min    max  range
## X1    1 94 71005.32 49034.47  54500 63151.32 23721.6 19000 335000 316000
##    skew kurtosis      se
## X1 2.89    10.93 5057.52
## 
## $gr5059
##    vars  n     mean       sd median  trimmed     mad   min    max  range
## X1    1 73 75212.33 63821.47  57000 62754.24 25204.2 17000 422000 405000
##    skew kurtosis      se
## X1 2.85    10.71 7469.74
## 
## $`60plus`
##    vars  n     mean       sd median  trimmed     mad   min    max  range
## X1    1 27 72592.59 57910.58  54000 63521.74 28169.4 21000 320000 299000
##    skew kurtosis      se
## X1 2.87     9.49 11144.9
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

2.0.2 marriage

describe.by(newdata2$cost_inc, newdata2$d1a)
## Warning: describe.by is deprecated. Please use the describeBy function
## $none
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 180 81516.67 52744.61  69000 73986.11 39288.9 22000 410000 388000
##    skew kurtosis      se
## X1 2.44     9.55 3931.35
## 
## $married
##    vars   n     mean       sd median  trimmed   mad   min    max  range
## X1    1 281 78106.76 56857.91  60000 68117.78 29652 17000 422000 405000
##    skew kurtosis      se
## X1 2.52      8.4 3391.86
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

2.0.3 Educational

describe.by(newdata2$cost_inc, newdata2$educ2)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`1`
##    vars  n     mean       sd median  trimmed     mad   min    max  range
## X1    1 96 75343.75 66666.78  53500 61666.67 25945.5 17000 422000 405000
##    skew kurtosis      se
## X1 2.83     9.39 6804.15
## 
## $`2`
##    vars   n     mean       sd median  trimmed   mad   min    max  range
## X1    1 220 75106.82 48438.91  60000 67818.18 29652 17000 335000 318000
##    skew kurtosis      se
## X1 2.16     6.26 3265.75
## 
## $`3`
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 136 90988.97 56800.97  77500 82186.36 45219.3 24000 410000 386000
##    skew kurtosis      se
## X1 2.27     7.81 4870.64
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

2.0.4 income

describe.by(newdata2$cost_inc, newdata2$ter_in)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`1`
##    vars   n     mean       sd median  trimmed   mad   min    max  range
## X1    1 191 75222.51 52085.85  60000 66882.35 29652 17000 410000 393000
##    skew kurtosis     se
## X1 2.72    10.92 3768.8
## 
## $`2`
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 121 79471.07 51493.38  64000 73835.05 38547.6 17000 422000 405000
##    skew kurtosis      se
## X1 2.93    15.13 4681.22
## 
## $`3`
##    vars   n     mean       sd median  trimmed   mad   min    max  range
## X1    1 141 85670.21 62679.68  65000 73216.81 37065 25000 335000 310000
##    skew kurtosis      se
## X1 1.98     3.96 5278.58
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

2.0.5 seflhealth

describe.by(newdata2$cost_inc, newdata2$selfhealth)
## Warning: describe.by is deprecated. Please use the describeBy function
## $notwell
##    vars   n     mean       sd median  trimmed   mad   min    max  range
## X1    1 254 75470.47 57596.32  58000 65093.14 29652 17000 422000 405000
##    skew kurtosis      se
## X1 2.88    11.15 3613.91
## 
## $good
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 207 84306.76 51963.94  71000 76877.25 41512.8 17000 322000 305000
##    skew kurtosis      se
## X1 1.93     5.12 3611.74
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

3 smoking information

3.0.1 Frequency of smoking

describe.by(newdata2$cost_inc, newdata2$c1)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`1`
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 398 79675.88 56008.34  62000 70735.94 32617.2 17000 422000 405000
##    skew kurtosis      se
## X1 2.58     9.37 2807.44
## 
## $`2`
##    vars  n     mean       sd median  trimmed     mad   min    max  range
## X1    1 63 77936.51 50627.63  68000 68686.27 38547.6 24000 240000 216000
##    skew kurtosis      se
## X1 1.69     2.55 6378.48
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

3.0.2 current smoking status

describe.by(newdata2$cost_inc, newdata2$smostt)
## Warning: describe.by is deprecated. Please use the describeBy function
## $light
##    vars   n     mean       sd median trimmed     mad   min    max  range
## X1    1 127 83307.09 63480.09  62000 71223.3 32617.2 19000 410000 391000
##    skew kurtosis      se
## X1 2.28     6.52 5632.95
## 
## $medium
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 173 72190.75 39279.46  62000 67561.15 25204.2 17000 308000 291000
##    skew kurtosis      se
## X1 2.29     8.91 2986.36
## 
## $heavy
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 161 84173.91 62084.85  62000 73577.52 40030.2 17000 422000 405000
##    skew kurtosis      se
## X1 2.27     7.03 4892.97
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

3.0.3 intention to quit

describe.by(newdata2$cost_inc, newdata2$b6a)
## Warning: describe.by is deprecated. Please use the describeBy function
## $no
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 377 78286.47 53269.15  61000 69787.13 31134.6 17000 410000 393000
##    skew kurtosis     se
## X1 2.34     7.78 2743.5
## 
## $yes
##    vars  n     mean       sd median  trimmed     mad   min    max  range
## X1    1 76 88236.84 65419.64  72500 76403.23 43736.7 24000 422000 398000
##    skew kurtosis      se
## X1 2.64      8.9 7504.15
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

3.0.4 historical of quitting

describe.by(newdata2$cost_inc, newdata2$h1)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`0`
##    vars   n     mean       sd median  trimmed   mad   min    max  range
## X1    1 169 74893.49 49650.21  60000 67635.04 29652 17000 322000 305000
##    skew kurtosis      se
## X1 2.21     6.78 3819.25
## 
## $`1`
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 292 82068.49 58173.46  68000 72061.97 38547.6 17000 422000 405000
##    skew kurtosis      se
## X1 2.55     8.96 3404.34
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

4 worry about cigarette

4.0.1 worry about health effect

describe.by(newdata2$cost_inc, newdata2$b16a)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`0`
##    vars  n     mean       sd median  trimmed     mad   min    max  range
## X1    1 64 76218.75 42595.35  66000 73384.62 36323.7 19000 255000 236000
##    skew kurtosis      se
## X1 1.32     2.96 5324.42
## 
## $`1`
##    vars   n     mean    sd median  trimmed     mad   min    max  range
## X1    1 395 79982.28 57177  62000 69954.26 32617.2 17000 422000 405000
##    skew kurtosis      se
## X1 2.53     8.67 2876.89
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

4.0.2 awareness of harm of cig

describe.by(newdata2$cost_inc, newdata2$b18a)
## Warning: describe.by is deprecated. Please use the describeBy function
## $Good
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 154 73600.65 53508.27  55500 65495.97 27428.1 17000 410000 393000
##    skew kurtosis      se
## X1 3.24    14.46 4311.82
## 
## $bad
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 304 82284.54 56143.72  68000 72795.08 39288.9 17000 422000 405000
##    skew kurtosis      se
## X1 2.18     6.64 3220.06
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

5 policy

5.0.1 warming lablels

describe.by(newdata2$cost_inc, newdata2$label1)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`0`
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 383 80616.19 56002.85  63000 71607.49 34099.8 17000 422000 405000
##    skew kurtosis      se
## X1 2.49     8.93 2861.61
## 
## $`1`
##    vars  n     mean       sd median trimmed   mad   min    max  range skew
## X1    1 77 73961.04 51639.04  60000 65238.1 29652 17000 322000 305000 2.42
##    kurtosis      se
## X1     7.27 5884.81
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

5.0.2 anti-campaign

describe.by(newdata2$cost_inc, newdata2$ant)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`0`
##    vars n  mean       sd median trimmed     mad   min   max range skew
## X1    1 2 37500 17677.67  37500   37500 18532.5 25000 50000 25000    0
##    kurtosis    se
## X1    -2.75 12500
## 
## $`1`
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 172 77244.19 48618.68  61500 69920.29 34841.1 17000 285000 268000
##    skew kurtosis      se
## X1 1.71     3.33 3707.14
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

5.0.3 smoke-free

describe.by(newdata2$cost_inc, newdata2$freeEn)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`0`
##    vars   n    mean       sd median  trimmed     mad   min    max  range
## X1    1 346 80234.1 53920.38  64000 71314.75 31134.6 19000 410000 391000
##    skew kurtosis      se
## X1 2.36     7.64 2898.78
## 
## $`1`
##    vars   n     mean       sd median  trimmed   mad   min    max  range
## X1    1 113 77743.36 59537.92  56000 68417.58 29652 17000 422000 405000
##    skew kurtosis      se
## X1 2.77     10.9 5600.86
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

5.0.4 advice

describe.by(newdata2$cost_inc, newdata2$c7ad)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`0`
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 302 78725.17 55784.76  61000 69431.82 31134.6 17000 410000 393000
##    skew kurtosis      se
## X1 2.37     7.45 3210.05
## 
## $`1`
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 159 80792.45 54384.02  68000 72410.85 38547.6 25000 422000 397000
##    skew kurtosis      se
## X1 2.75    11.54 4312.93
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

5.0.5 policy combination

describe.by(newdata2$cost_inc, newdata2$p)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`1`
##    vars  n     mean       sd median  trimmed     mad   min    max  range
## X1    1 53 89283.02 63575.33  62000 78744.19 40030.2 21000 285000 264000
##    skew kurtosis      se
## X1 1.43     1.24 8732.74
## 
## $`2`
##    vars   n     mean       sd median  trimmed     mad   min    max  range
## X1    1 119 71882.35 39373.09  61000 67701.03 31134.6 17000 222000 205000
##    skew kurtosis      se
## X1 1.32     2.13 3609.33
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

Now, we are going to see description for casual branch in Vietnam.

Descriptive for common smoke price in Vietnam

6 read data

r=read.dta("C:/Users/BINH THANG/Dropbox/Korea/STudy/Thesis/data management/DataR/dataR3.dta")

r1 <- subset(r, br==10)
attach(r1)
## The following objects are masked from newdata2:
## 
##     a1, advice, advice1, ag, age_group, anticam, anticam2, b1,
##     b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, policy,
##     policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4
## The following objects are masked from r:
## 
##     a1, advice, advice1, ag, age_group, anticam, anticam2, b1,
##     b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, policy,
##     policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4
## The following objects are masked from r1 (pos = 7):
## 
##     a1, advice, advice1, ag, age_group, anticam, anticam2, b1,
##     b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, policy,
##     policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4

6.0.1 Define

r1$freeEn[c9==1] <- 1
r1$freeEn[c9>1] <- 0




r1$h1[h1== 1] <- 1
r1$h1[h1== 2] <- 0


r1$c7ad[c7== 2] <- 0
r1$c7ad[c7== 1] <- 1
r1$c7ad[is.na(r1$c7)] <- 0


r1$ant[c5==1& c5==2 & c5==7 & c5==8 & c5==9] <- 0
r1$ant[c5==3|c5==4|c5==5] <- 1
r1$ant[is.na(r1$c5)] <- 0


r1$p1=r1$label1+r1$freeEn+r1$ant+r1$c7ad

r1$p[r1$p1==0] <- 0
r1$p[r1$p1==1] <- 1
r1$p[r1$p1>=2] <- 2

attach(r1)
## The following objects are masked from r1 (pos = 3):
## 
##     a1, advice, advice1, ag, age_group, anticam, anticam2, b1,
##     b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, policy,
##     policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4
## The following objects are masked from newdata2:
## 
##     a1, advice, advice1, ag, age_group, ant, anticam, anticam2,
##     b1, b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c7ad, c8, c9, COST, cost_inc, cost1, costincrease, ct,
##     d1, d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9,
##     Decision, e1, e2, edu, educ1, educ2, f1, freeEn, ghi1, ghi2,
##     ghiro2, giadinhkoUH, group_age, group_age1, h1, h10a, h10a1,
##     h10a10, h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6,
##     h10a7, h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3,
##     h4, h5, h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5,
##     l6, label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, p, p1,
##     policy, policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4
## The following objects are masked from r:
## 
##     a1, advice, advice1, ag, age_group, anticam, anticam2, b1,
##     b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, policy,
##     policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4
## The following objects are masked from r1 (pos = 8):
## 
##     a1, advice, advice1, ag, age_group, anticam, anticam2, b1,
##     b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, policy,
##     policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4
newdata2=r1

attach(newdata2 )
## The following objects are masked from r1 (pos = 3):
## 
##     a1, advice, advice1, ag, age_group, ant, anticam, anticam2,
##     b1, b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c7ad, c8, c9, COST, cost_inc, cost1, costincrease, ct,
##     d1, d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9,
##     Decision, e1, e2, edu, educ1, educ2, f1, freeEn, ghi1, ghi2,
##     ghiro2, giadinhkoUH, group_age, group_age1, h1, h10a, h10a1,
##     h10a10, h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6,
##     h10a7, h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3,
##     h4, h5, h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5,
##     l6, label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, p, p1,
##     policy, policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4
## The following objects are masked from r1 (pos = 4):
## 
##     a1, advice, advice1, ag, age_group, anticam, anticam2, b1,
##     b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, policy,
##     policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4
## The following objects are masked from newdata2 (pos = 7):
## 
##     a1, advice, advice1, ag, age_group, ant, anticam, anticam2,
##     b1, b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c7ad, c8, c9, COST, cost_inc, cost1, costincrease, ct,
##     d1, d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9,
##     Decision, e1, e2, edu, educ1, educ2, f1, freeEn, ghi1, ghi2,
##     ghiro2, giadinhkoUH, group_age, group_age1, h1, h10a, h10a1,
##     h10a10, h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6,
##     h10a7, h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3,
##     h4, h5, h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5,
##     l6, label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, p, p1,
##     policy, policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4
## The following objects are masked from r:
## 
##     a1, advice, advice1, ag, age_group, anticam, anticam2, b1,
##     b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, policy,
##     policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4
## The following objects are masked from r1 (pos = 9):
## 
##     a1, advice, advice1, ag, age_group, anticam, anticam2, b1,
##     b10, b10a1, b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11,
##     b11a, b11a2, b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17,
##     b18, b18a, b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1,
##     b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br,
##     branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5,
##     c6, c7, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, label2, moneyspent, msdt, n01, n02, n03, n05, n06,
##     n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13, n14,
##     n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4,
##     n40, n41, n42, n43, n44, n45, n46, n47, n48, n49, n5, n50,
##     n51, n52, n53, n54, n55, n56, n57, n58, n59, n6, n60, n61,
##     n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a,
##     n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8, n88, n89,
##     n8nha, n9, n97, n98, n99, n9khach, noEnvi2, occup1, policy,
##     policy_a, policy2, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4

```

6.0.2 define varibles as catergory

newdata2$age_group=as.factor(newdata2$age_group)
newdata2$educ2=as.factor(newdata2$educ2)

newdata2$h1=as.factor(newdata2$h1)

newdata2$d1a=as.factor(newdata2$d1a)


newdata2$selfhealth=as.factor(newdata2$selfhealth)

newdata2$b18a=as.factor(newdata2$b18a)

newdata2$b16a=as.factor(newdata2$b16a)

newdata2$b6a=as.factor(newdata2$b6a)

newdata2$smostt=as.factor(newdata2$smostt)

newdata2$ter_in=as.factor(newdata2$ter_in)

newdata2$group_age1=as.factor(newdata2$group_age1)

newdata2$label1=as.factor(newdata2$label1)
newdata2$freeEn=as.factor(newdata2$freeEn)
newdata2$c7ad=as.factor(newdata2$c7ad)
newdata2$ant=as.factor(newdata2$ant)

newdata2$p=as.factor(newdata2$p)

7 general descriptive

library("psych", lib.loc="~/R/win-library/3.2")
a=describe(newdata2$cost_inc)
library(knitr)
kable(a, caption = "A knitr kable.")
A knitr kable.
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 337 78826.41 51109.54 63000 70749.08 32617.2 17000 335000 318000 2.042623 5.385577 2784.114

7.0.1 AGE

describe.by(newdata2$b11a2, newdata2$age_group)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`group18-29`
##    vars   n    mean       sd median  trimmed    mad  min   max  range skew
## X1    1 146 25013.7 15800.91  22500 23525.42 3706.5 7000 2e+05 193000 9.31
##    kurtosis      se
## X1   100.16 1307.69
## 
## $gr3039
##    vars  n     mean      sd median trimmed    mad  min   max range skew
## X1    1 62 25016.13 8673.48  23500   24420 5189.1 8000 70000 62000 2.15
##    kurtosis      se
## X1     9.74 1101.53
## 
## $gr4049
##    vars  n     mean       sd median  trimmed    mad min    max  range skew
## X1    1 84 25583.67 29365.37  22000 22411.76 5930.4  28 280000 279972 7.73
##    kurtosis      se
## X1    64.11 3204.02
## 
## $gr5059
##    vars  n     mean       sd median  trimmed  mad  min   max  range skew
## X1    1 49 24908.16 26572.16  22000 21707.32 7413 6000 2e+05 194000  5.8
##    kurtosis      se
## X1     35.5 3796.02
## 
## $`60plus`
##    vars  n     mean      sd median  trimmed    mad  min   max range  skew
## X1    1 17 21117.65 7192.73  22000 21466.67 8895.6 7000 30000 23000 -0.61
##    kurtosis      se
## X1    -1.06 1744.49
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

7.0.2 marriage

describe.by(newdata2$b11a2, newdata2$d1a)
## Warning: describe.by is deprecated. Please use the describeBy function
## $none
##    vars   n     mean      sd median  trimmed    mad  min   max  range skew
## X1    1 136 25705.88 16417.3  23000 23981.82 4447.8 7000 2e+05 193000  8.8
##    kurtosis      se
## X1    90.53 1407.77
## 
## $married
##    vars   n     mean       sd median  trimmed    mad min    max  range
## X1    1 222 24484.36 22396.65  22000 22640.45 5930.4  28 280000 279972
##    skew kurtosis      se
## X1 8.87    90.43 1503.16
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

7.0.3 Educational

describe.by(newdata2$b11a2, newdata2$educ2)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`1`
##    vars  n     mean       sd median  trimmed    mad  min    max  range
## X1    1 66 27606.06 39291.76  22000 21129.63 5930.4 7000 280000 273000
##    skew kurtosis      se
## X1 5.27    28.42 4836.48
## 
## $`2`
##    vars   n     mean       sd median  trimmed    mad min   max  range skew
## X1    1 187 24350.42 14704.06  23000 23549.67 4447.8  28 2e+05 199972  9.1
##    kurtosis      se
## X1   106.18 1075.27
## 
## $`3`
##    vars  n    mean      sd median  trimmed    mad  min   max range skew
## X1    1 97 24443.3 7966.03  23000 23987.34 4447.8 7000 70000 63000 1.91
##    kurtosis     se
## X1     9.97 808.83
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

7.0.4 income

describe.by(newdata2$b11a2, newdata2$ter_in)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`1`
##    vars   n    mean       sd median  trimmed    mad  min   max  range skew
## X1    1 145 22493.1 16201.42  22000 21692.31 4447.8 6000 2e+05 194000    9
##    kurtosis      se
## X1    96.47 1345.45
## 
## $`2`
##    vars  n     mean       sd median  trimmed    mad  min    max  range
## X1    1 95 26389.47 27047.36  22000 23610.39 4447.8 7000 280000 273000
##    skew kurtosis   se
## X1 8.67    78.38 2775
## 
## $`3`
##    vars   n     mean       sd median  trimmed  mad min   max  range skew
## X1    1 111 27009.26 18876.03  25000 24977.53 7413  28 2e+05 199972 7.01
##    kurtosis      se
## X1    60.95 1791.63
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

7.0.5 seflhealth

describe.by(newdata2$b11a2, newdata2$selfhealth)
## Warning: describe.by is deprecated. Please use the describeBy function
## $notwell
##    vars   n     mean       sd median  trimmed    mad min   max  range skew
## X1    1 191 24505.38 19572.82  22000 22954.25 5930.4  28 2e+05 199972 7.51
##    kurtosis      se
## X1    64.78 1416.24
## 
## $good
##    vars   n     mean      sd median  trimmed    mad  min    max  range
## X1    1 167 25455.09 21184.7  23000 23644.44 4447.8 7000 280000 273000
##     skew kurtosis      se
## X1 10.43   121.97 1639.32
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

8 smoking information

8.0.1 Frequency of smoking

describe.by(newdata2$b11a2, newdata2$c1)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`1`
##    vars   n     mean       sd median trimmed    mad min    max  range skew
## X1    1 309 25347.99 21648.12  23000 23449.8 4447.8  28 280000 279972 8.67
##    kurtosis      se
## X1     86.5 1231.52
## 
## $`2`
##    vars  n     mean      sd median  trimmed    mad  min   max range skew
## X1    1 49 22428.57 7452.63  22000 22390.24 2965.2 7000 41000 34000 0.02
##    kurtosis      se
## X1     0.44 1064.66
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

8.0.2 current smoking status

describe.by(newdata2$b11a2, newdata2$smostt)
## Warning: describe.by is deprecated. Please use the describeBy function
## $light
##    vars  n     mean      sd median trimmed    mad  min   max range skew
## X1    1 98 23857.14 8256.21  23000 23512.5 4447.8 7000 70000 63000 1.75
##    kurtosis  se
## X1     8.89 834
## 
## $medium
##    vars   n     mean       sd median trimmed    mad  min    max  range
## X1    1 137 26306.57 27476.61  23000 23396.4 4447.8 6000 280000 274000
##    skew kurtosis      se
## X1 7.57    61.73 2347.49
## 
## $heavy
##    vars   n     mean       sd median trimmed    mad min   max  range skew
## X1    1 123 24305.11 17569.64  22000 23020.2 4447.8  28 2e+05 199972  8.1
##    kurtosis     se
## X1    78.46 1584.2
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

8.0.3 intention to quit

describe.by(newdata2$b11a2, newdata2$b6a)
## Warning: describe.by is deprecated. Please use the describeBy function
## $no
##    vars   n     mean      sd median  trimmed    mad min    max  range skew
## X1    1 296 25049.08 22122.7  22000 23050.42 4447.8  28 280000 279972 8.51
##    kurtosis      se
## X1    83.13 1285.86
## 
## $yes
##    vars  n    mean      sd median  trimmed    mad  min   max range skew
## X1    1 57 24438.6 7171.42  23000 24212.77 4447.8 7000 50000 43000 0.61
##    kurtosis     se
## X1     2.58 949.88
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

8.0.4 historical of quitting

describe.by(newdata2$b11a2, newdata2$h1)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`0`
##    vars   n     mean       sd median  trimmed    mad  min    max  range
## X1    1 134 25082.09 23507.17  23000 23101.85 4447.8 7000 280000 273000
##    skew kurtosis      se
## X1 9.55   100.33 2030.71
## 
## $`1`
##    vars   n     mean       sd median  trimmed    mad min   max  range skew
## X1    1 224 24868.43 18200.43  22000 23438.89 4447.8  28 2e+05 199972 7.93
##    kurtosis      se
## X1    73.68 1216.07
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

9 worry

9.0.1 worry about health effect

describe.by(newdata2$b11a2, newdata2$b16a)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`0`
##    vars  n     mean       sd median  trimmed    mad  min    max  range
## X1    1 45 28555.56 38851.44  22000 23189.19 4447.8 8000 280000 272000
##    skew kurtosis      se
## X1 6.01    35.99 5791.63
## 
## $`1`
##    vars   n     mean       sd median trimmed    mad min   max  range skew
## X1    1 312 24347.85 16001.12  22000   23324 4447.8  28 2e+05 199972 8.51
##    kurtosis     se
## X1    90.48 905.89
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

9.0.2 awareness of harm of cig

describe.by(newdata2$b11a2, newdata2$b18a)
## Warning: describe.by is deprecated. Please use the describeBy function
## $Good
##    vars   n     mean       sd median  trimmed    mad  min   max  range
## X1    1 129 26108.53 23151.75  23000 23495.24 4447.8 7000 2e+05 193000
##    skew kurtosis     se
## X1 6.54    46.39 2038.4
## 
## $bad
##    vars   n     mean       sd median  trimmed    mad min    max  range
## X1    1 227 24191.75 18594.36  22000 23125.68 4447.8  28 280000 279972
##     skew kurtosis      se
## X1 11.51   155.06 1234.15
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

9.0.3 warming lablels

describe.by(newdata2$b11a2, newdata2$label1)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`0`
##    vars   n     mean       sd median  trimmed    mad min   max  range skew
## X1    1 307 24447.97 16165.23  23000 23340.08 4447.8  28 2e+05 199972 8.38
##    kurtosis    se
## X1       88 922.6
## 
## $`1`
##    vars  n  mean       sd median trimmed    mad  min    max  range skew
## X1    1 50 27920 36939.47  22000   22950 3706.5 8000 280000 272000 6.35
##    kurtosis      se
## X1    40.38 5224.03
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

9.0.4 anti-campaign

describe.by(newdata2$b11a2, newdata2$ant)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`0`
##    vars n  mean sd median trimmed mad   min   max range skew kurtosis se
## X1    1 1 10000 NA  10000   10000   0 10000 10000     0   NA       NA NA
## 
## $`1`
##    vars   n  mean       sd median  trimmed    mad  min    max  range skew
## X1    1 125 24952 24582.27  22000 22594.06 4447.8 6000 280000 274000 8.96
##    kurtosis      se
## X1    89.83 2198.71
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

9.0.5 smoke-free

describe.by(newdata2$b11a2, newdata2$freeEn)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`0`
##    vars   n     mean    sd median trimmed    mad min    max  range skew
## X1    1 274 25823.09 22949  22500   23550 3706.5  28 280000 279972 8.15
##    kurtosis     se
## X1    76.25 1386.4
## 
## $`1`
##    vars  n     mean      sd median  trimmed    mad  min   max range  skew
## X1    1 83 22240.96 5575.62  22000 22865.67 4447.8 6000 35000 29000 -0.93
##    kurtosis  se
## X1     1.24 612
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

9.0.6 advice

describe.by(newdata2$b11a2, newdata2$c7ad)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`0`
##    vars   n     mean       sd median  trimmed    mad  min    max  range
## X1    1 238 26182.77 24262.39  23000 23765.62 4447.8 6000 280000 274000
##    skew kurtosis     se
## X1 7.88     69.5 1572.7
## 
## $`1`
##    vars   n     mean      sd median  trimmed    mad min   max range skew
## X1    1 120 22500.23 7544.12  22000 22541.67 2965.2  28 70000 69972 1.85
##    kurtosis     se
## X1    12.61 688.68
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)

9.0.7 policy combination

describe.by(newdata2$b11a2, newdata2$p)
## Warning: describe.by is deprecated. Please use the describeBy function
## $`1`
##    vars  n     mean       sd median  trimmed    mad  min   max range skew
## X1    1 45 23888.89 10045.85  24000 23648.65 5930.4 7000 45000 38000 0.15
##    kurtosis      se
## X1    -0.73 1497.55
## 
## $`2`
##    vars  n  mean       sd median  trimmed    mad  min    max  range skew
## X1    1 80 25550 29854.46  22000 22515.62 4447.8 6000 280000 274000 7.76
##    kurtosis      se
## X1    63.03 3337.83
## 
## attr(,"call")
## by.default(data = x, INDICES = group, FUN = describe, type = type)
library(foreign)

r=read.dta("C:/Users/BINH THANG/Dropbox/Korea/STudy/Thesis/data management/DataR/dataR5.dta")

r1 <- r

attach(r1)
## The following object is masked _by_ .GlobalEnv:
## 
##     a
## The following objects are masked from newdata2 (pos = 3):
## 
##     a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a, b2,
##     b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3, b6a4, b6a5,
##     b6a6, b6a7, b6a7a, b7, b8, b9, br, branch, branch1, branch2,
##     branch3, c1, c2, c23a, c3, c4, c5, c6, c7, c8, c9, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label1, moneyspent, msdt,
##     n01, n02, n03, n05, n06, n07, n08, n1, n10, n100, n101, n102,
##     n103, n11, n12, n13, n14, n15, n16, n1b, n2, n3, n35, n36,
##     n37, n38, n39, n3posterb, n4, n40, n41, n42, n43, n44, n45,
##     n46, n47, n48, n49, n5, n50, n51, n52, n53, n54, n55, n56,
##     n57, n58, n59, n6, n60, n61, n61a, n62, n62a, n63, n63a, n64,
##     n64a, n65, n65a, n66, n66a, n67, n67a, n68, n68a, n7, n77,
##     n78, n7tren, n8, n88, n89, n8nha, n9, n97, n98, n99, n9khach,
##     noEnvi2, occup1, policy, policy_a, reasons, reasons1, s1,
##     Screening, selfhealth, SH1, smostt, ter_fa1, ter_in,
##     tertile_fa, tertile_indi, test, unitsdiffi1, var242, w1, w2,
##     w3, w4
## The following objects are masked from r1 (pos = 4):
## 
##     a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a, b2,
##     b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3, b6a4, b6a5,
##     b6a6, b6a7, b6a7a, b7, b8, b9, br, branch, branch1, branch2,
##     branch3, c1, c2, c23a, c3, c4, c5, c6, c7, c8, c9, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label1, moneyspent, msdt,
##     n01, n02, n03, n05, n06, n07, n08, n1, n10, n100, n101, n102,
##     n103, n11, n12, n13, n14, n15, n16, n1b, n2, n3, n35, n36,
##     n37, n38, n39, n3posterb, n4, n40, n41, n42, n43, n44, n45,
##     n46, n47, n48, n49, n5, n50, n51, n52, n53, n54, n55, n56,
##     n57, n58, n59, n6, n60, n61, n61a, n62, n62a, n63, n63a, n64,
##     n64a, n65, n65a, n66, n66a, n67, n67a, n68, n68a, n7, n77,
##     n78, n7tren, n8, n88, n89, n8nha, n9, n97, n98, n99, n9khach,
##     noEnvi2, occup1, policy, policy_a, reasons, reasons1, s1,
##     Screening, selfhealth, SH1, smostt, ter_fa1, ter_in,
##     tertile_fa, tertile_indi, test, unitsdiffi1, var242, w1, w2,
##     w3, w4
## The following objects are masked from r1 (pos = 5):
## 
##     a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a, b2,
##     b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3, b6a4, b6a5,
##     b6a6, b6a7, b6a7a, b7, b8, b9, br, branch, branch1, branch2,
##     branch3, c1, c2, c23a, c3, c4, c5, c6, c7, c8, c9, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label1, moneyspent, msdt,
##     n01, n02, n03, n05, n06, n07, n08, n1, n10, n100, n101, n102,
##     n103, n11, n12, n13, n14, n15, n16, n1b, n2, n3, n35, n36,
##     n37, n38, n39, n3posterb, n4, n40, n41, n42, n43, n44, n45,
##     n46, n47, n48, n49, n5, n50, n51, n52, n53, n54, n55, n56,
##     n57, n58, n59, n6, n60, n61, n61a, n62, n62a, n63, n63a, n64,
##     n64a, n65, n65a, n66, n66a, n67, n67a, n68, n68a, n7, n77,
##     n78, n7tren, n8, n88, n89, n8nha, n9, n97, n98, n99, n9khach,
##     noEnvi2, occup1, policy, policy_a, reasons, reasons1, s1,
##     Screening, selfhealth, SH1, smostt, ter_fa1, ter_in,
##     tertile_fa, tertile_indi, test, unitsdiffi1, var242, w1, w2,
##     w3, w4
## The following objects are masked from newdata2 (pos = 8):
## 
##     a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a, b2,
##     b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3, b6a4, b6a5,
##     b6a6, b6a7, b6a7a, b7, b8, b9, br, branch, branch1, branch2,
##     branch3, c1, c2, c23a, c3, c4, c5, c6, c7, c8, c9, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label1, moneyspent, msdt,
##     n01, n02, n03, n05, n06, n07, n08, n1, n10, n100, n101, n102,
##     n103, n11, n12, n13, n14, n15, n16, n1b, n2, n3, n35, n36,
##     n37, n38, n39, n3posterb, n4, n40, n41, n42, n43, n44, n45,
##     n46, n47, n48, n49, n5, n50, n51, n52, n53, n54, n55, n56,
##     n57, n58, n59, n6, n60, n61, n61a, n62, n62a, n63, n63a, n64,
##     n64a, n65, n65a, n66, n66a, n67, n67a, n68, n68a, n7, n77,
##     n78, n7tren, n8, n88, n89, n8nha, n9, n97, n98, n99, n9khach,
##     noEnvi2, occup1, policy, policy_a, reasons, reasons1, s1,
##     Screening, selfhealth, SH1, smostt, ter_fa1, ter_in,
##     tertile_fa, tertile_indi, test, unitsdiffi1, var242, w1, w2,
##     w3, w4
## The following objects are masked from r:
## 
##     a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a, b2,
##     b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3, b6a4, b6a5,
##     b6a6, b6a7, b6a7a, b7, b8, b9, br, branch, branch1, branch2,
##     branch3, c1, c2, c23a, c3, c4, c5, c6, c7, c8, c9, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label1, moneyspent, msdt,
##     n01, n02, n03, n05, n06, n07, n08, n1, n10, n100, n101, n102,
##     n103, n11, n12, n13, n14, n15, n16, n1b, n2, n3, n35, n36,
##     n37, n38, n39, n3posterb, n4, n40, n41, n42, n43, n44, n45,
##     n46, n47, n48, n49, n5, n50, n51, n52, n53, n54, n55, n56,
##     n57, n58, n59, n6, n60, n61, n61a, n62, n62a, n63, n63a, n64,
##     n64a, n65, n65a, n66, n66a, n67, n67a, n68, n68a, n7, n77,
##     n78, n7tren, n8, n88, n89, n8nha, n9, n97, n98, n99, n9khach,
##     noEnvi2, occup1, policy, policy_a, reasons, reasons1, s1,
##     Screening, selfhealth, SH1, smostt, ter_fa1, ter_in,
##     tertile_fa, tertile_indi, test, unitsdiffi1, var242, w1, w2,
##     w3, w4
## The following objects are masked from r1 (pos = 10):
## 
##     a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a, b2,
##     b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3, b6a4, b6a5,
##     b6a6, b6a7, b6a7a, b7, b8, b9, br, branch, branch1, branch2,
##     branch3, c1, c2, c23a, c3, c4, c5, c6, c7, c8, c9, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label1, moneyspent, msdt,
##     n01, n02, n03, n05, n06, n07, n08, n1, n10, n100, n101, n102,
##     n103, n11, n12, n13, n14, n15, n16, n1b, n2, n3, n35, n36,
##     n37, n38, n39, n3posterb, n4, n40, n41, n42, n43, n44, n45,
##     n46, n47, n48, n49, n5, n50, n51, n52, n53, n54, n55, n56,
##     n57, n58, n59, n6, n60, n61, n61a, n62, n62a, n63, n63a, n64,
##     n64a, n65, n65a, n66, n66a, n67, n67a, n68, n68a, n7, n77,
##     n78, n7tren, n8, n88, n89, n8nha, n9, n97, n98, n99, n9khach,
##     noEnvi2, occup1, policy, policy_a, reasons, reasons1, s1,
##     Screening, selfhealth, SH1, smostt, ter_fa1, ter_in,
##     tertile_fa, tertile_indi, test, unitsdiffi1, var242, w1, w2,
##     w3, w4
r1$wtp[cost_inc >=1] <- 0
r1$wtp[is.na(r1$wtp)] <- 1



r1$highper[cost_inc<=62000] <- 0
r1$highper[cost_inc>62000] <- 1


r1$b16a[b16a == 5] <- 0


r1$freeEn[c9==1] <- 1
r1$freeEn[c9>1] <- 0




r1$h1[h1== 1] <- 1
r1$h1[h1== 2] <- 0


r1$c7ad[c7== 2] <- 0
r1$c7ad[c7== 1] <- 1
r1$c7ad[is.na(r1$c7)] <- 0


r1$ant[c5==1& c5==2 & c5==7 & c5==8 & c5==9] <- 0
r1$ant[c5==3|c5==4|c5==5] <- 1
r1$ant[is.na(r1$c5)] <- 0


r1$p1=r1$label1+r1$freeEn+r1$ant+r1$c7ad

r1$p[r1$p1==0] <- 0
r1$p[r1$p1==1] <- 1
r1$p[r1$p1>=2] <- 2







newdata2=r1

attach(newdata2 )
## The following object is masked _by_ .GlobalEnv:
## 
##     a
## The following objects are masked from r1 (pos = 3):
## 
##     a, a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a,
##     b1a1, b1a2, b1a3, b2, b2a1, b3, b4, b5, b5a, b6, b6_123, b6a,
##     b6a1, b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9,
##     br, branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4,
##     c5, c6, c6a111, c7, c8, c9, clog, clog1, COST, cost_inc,
##     cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3, d3a, d4,
##     d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1, educ2, f1,
##     ghi1, ghi2, ghiro2, giadinhkoUH, group_age, group_age1, h1,
##     h10a, h10a1, h10a10, h10a11, h10a11a, h10a2, h10a3, h10a4,
##     h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a, h12a_1, h12log,
##     h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000, ict1a, ict2a,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label_1, label1, label1a,
##     logb7, logC, logitCost, moneyspent, msdt, n01, n02, n03, n05,
##     n06, n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13,
##     n14, n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39,
##     n3posterb, n4, n40, n41, n42, n43, n44, n45, n46, n47, n48,
##     n49, n5, n50, n51, n52, n53, n54, n55, n56, n57, n58, n59, n6,
##     n60, n61, n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a,
##     n66, n66a, n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8,
##     n88, n89, n8nha, n9, n97, n98, n99, n9khach, noE, noEnvi2,
##     occup1, poli4, poli4a, policy, policy_a, policyeffect,
##     reasons, reasons1, s1, Screening, selfhealth, SH1, smostt,
##     taxIn, ter_fa1, ter_in, tertile_fa, tertile_indi, test,
##     unitsdiffi1, var242, w1, w2, w3, w4
## The following objects are masked from newdata2 (pos = 4):
## 
##     a1, advice, ag, age_group, ant, anticam, b1, b10, b10a1,
##     b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2,
##     b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a,
##     b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3,
##     b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br, branch,
##     branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5, c6, c7,
##     c7ad, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, freeEn, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, moneyspent, msdt, n01, n02, n03, n05, n06, n07, n08,
##     n1, n10, n100, n101, n102, n103, n11, n12, n13, n14, n15, n16,
##     n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4, n40, n41,
##     n42, n43, n44, n45, n46, n47, n48, n49, n5, n50, n51, n52,
##     n53, n54, n55, n56, n57, n58, n59, n6, n60, n61, n61a, n62,
##     n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a, n67, n67a,
##     n68, n68a, n7, n77, n78, n7tren, n8, n88, n89, n8nha, n9, n97,
##     n98, n99, n9khach, noEnvi2, occup1, p, p1, policy, policy_a,
##     reasons, reasons1, s1, Screening, selfhealth, SH1, smostt,
##     ter_fa1, ter_in, tertile_fa, tertile_indi, test, unitsdiffi1,
##     var242, w1, w2, w3, w4
## The following objects are masked from r1 (pos = 5):
## 
##     a1, advice, ag, age_group, ant, anticam, b1, b10, b10a1,
##     b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2,
##     b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a,
##     b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3,
##     b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br, branch,
##     branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5, c6, c7,
##     c7ad, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, freeEn, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, moneyspent, msdt, n01, n02, n03, n05, n06, n07, n08,
##     n1, n10, n100, n101, n102, n103, n11, n12, n13, n14, n15, n16,
##     n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4, n40, n41,
##     n42, n43, n44, n45, n46, n47, n48, n49, n5, n50, n51, n52,
##     n53, n54, n55, n56, n57, n58, n59, n6, n60, n61, n61a, n62,
##     n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a, n67, n67a,
##     n68, n68a, n7, n77, n78, n7tren, n8, n88, n89, n8nha, n9, n97,
##     n98, n99, n9khach, noEnvi2, occup1, p, p1, policy, policy_a,
##     reasons, reasons1, s1, Screening, selfhealth, SH1, smostt,
##     ter_fa1, ter_in, tertile_fa, tertile_indi, test, unitsdiffi1,
##     var242, w1, w2, w3, w4
## The following objects are masked from r1 (pos = 6):
## 
##     a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a, b2,
##     b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3, b6a4, b6a5,
##     b6a6, b6a7, b6a7a, b7, b8, b9, br, branch, branch1, branch2,
##     branch3, c1, c2, c23a, c3, c4, c5, c6, c7, c8, c9, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label1, moneyspent, msdt,
##     n01, n02, n03, n05, n06, n07, n08, n1, n10, n100, n101, n102,
##     n103, n11, n12, n13, n14, n15, n16, n1b, n2, n3, n35, n36,
##     n37, n38, n39, n3posterb, n4, n40, n41, n42, n43, n44, n45,
##     n46, n47, n48, n49, n5, n50, n51, n52, n53, n54, n55, n56,
##     n57, n58, n59, n6, n60, n61, n61a, n62, n62a, n63, n63a, n64,
##     n64a, n65, n65a, n66, n66a, n67, n67a, n68, n68a, n7, n77,
##     n78, n7tren, n8, n88, n89, n8nha, n9, n97, n98, n99, n9khach,
##     noEnvi2, occup1, policy, policy_a, reasons, reasons1, s1,
##     Screening, selfhealth, SH1, smostt, ter_fa1, ter_in,
##     tertile_fa, tertile_indi, test, unitsdiffi1, var242, w1, w2,
##     w3, w4
## The following objects are masked from newdata2 (pos = 9):
## 
##     a1, advice, ag, age_group, ant, anticam, b1, b10, b10a1,
##     b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2,
##     b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a,
##     b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3,
##     b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br, branch,
##     branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5, c6, c7,
##     c7ad, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, freeEn, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, moneyspent, msdt, n01, n02, n03, n05, n06, n07, n08,
##     n1, n10, n100, n101, n102, n103, n11, n12, n13, n14, n15, n16,
##     n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4, n40, n41,
##     n42, n43, n44, n45, n46, n47, n48, n49, n5, n50, n51, n52,
##     n53, n54, n55, n56, n57, n58, n59, n6, n60, n61, n61a, n62,
##     n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a, n67, n67a,
##     n68, n68a, n7, n77, n78, n7tren, n8, n88, n89, n8nha, n9, n97,
##     n98, n99, n9khach, noEnvi2, occup1, p, p1, policy, policy_a,
##     reasons, reasons1, s1, Screening, selfhealth, SH1, smostt,
##     ter_fa1, ter_in, tertile_fa, tertile_indi, test, unitsdiffi1,
##     var242, w1, w2, w3, w4, wtp
## The following objects are masked from r:
## 
##     a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a, b2,
##     b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3, b6a4, b6a5,
##     b6a6, b6a7, b6a7a, b7, b8, b9, br, branch, branch1, branch2,
##     branch3, c1, c2, c23a, c3, c4, c5, c6, c7, c8, c9, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label1, moneyspent, msdt,
##     n01, n02, n03, n05, n06, n07, n08, n1, n10, n100, n101, n102,
##     n103, n11, n12, n13, n14, n15, n16, n1b, n2, n3, n35, n36,
##     n37, n38, n39, n3posterb, n4, n40, n41, n42, n43, n44, n45,
##     n46, n47, n48, n49, n5, n50, n51, n52, n53, n54, n55, n56,
##     n57, n58, n59, n6, n60, n61, n61a, n62, n62a, n63, n63a, n64,
##     n64a, n65, n65a, n66, n66a, n67, n67a, n68, n68a, n7, n77,
##     n78, n7tren, n8, n88, n89, n8nha, n9, n97, n98, n99, n9khach,
##     noEnvi2, occup1, policy, policy_a, reasons, reasons1, s1,
##     Screening, selfhealth, SH1, smostt, ter_fa1, ter_in,
##     tertile_fa, tertile_indi, test, unitsdiffi1, var242, w1, w2,
##     w3, w4
## The following objects are masked from r1 (pos = 11):
## 
##     a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a, b2,
##     b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3, b6a4, b6a5,
##     b6a6, b6a7, b6a7a, b7, b8, b9, br, branch, branch1, branch2,
##     branch3, c1, c2, c23a, c3, c4, c5, c6, c7, c8, c9, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label1, moneyspent, msdt,
##     n01, n02, n03, n05, n06, n07, n08, n1, n10, n100, n101, n102,
##     n103, n11, n12, n13, n14, n15, n16, n1b, n2, n3, n35, n36,
##     n37, n38, n39, n3posterb, n4, n40, n41, n42, n43, n44, n45,
##     n46, n47, n48, n49, n5, n50, n51, n52, n53, n54, n55, n56,
##     n57, n58, n59, n6, n60, n61, n61a, n62, n62a, n63, n63a, n64,
##     n64a, n65, n65a, n66, n66a, n67, n67a, n68, n68a, n7, n77,
##     n78, n7tren, n8, n88, n89, n8nha, n9, n97, n98, n99, n9khach,
##     noEnvi2, occup1, policy, policy_a, reasons, reasons1, s1,
##     Screening, selfhealth, SH1, smostt, ter_fa1, ter_in,
##     tertile_fa, tertile_indi, test, unitsdiffi1, var242, w1, w2,
##     w3, w4

9.1 define varibles

newdata2$wtp=factor(newdata2$wtp)

newdata2$age_group=as.factor(newdata2$age_group)
newdata2$educ2=as.factor(newdata2$educ2)

newdata2$h1=as.factor(newdata2$h1)

newdata2$d1a=as.factor(newdata2$d1a)


newdata2$selfhealth=as.factor(newdata2$selfhealth)

newdata2$b18a=as.factor(newdata2$b18a)

newdata2$b16a=as.factor(newdata2$b16a)

newdata2$b6a=as.factor(newdata2$b6a)

newdata2$smostt=as.factor(newdata2$smostt)

newdata2$ter_in=as.factor(newdata2$ter_in)

newdata2$group_age1=as.factor(newdata2$group_age1)

newdata2$label1=as.factor(newdata2$label1)
newdata2$freeEn=as.factor(newdata2$freeEn)
newdata2$c7ad=as.factor(newdata2$c7ad)
newdata2$ant=as.factor(newdata2$ant)

newdata2$p=as.factor(newdata2$p)


attach(newdata2)
## The following object is masked _by_ .GlobalEnv:
## 
##     a
## The following objects are masked from newdata2 (pos = 3):
## 
##     a, a1, advice, ag, age_group, ant, anticam, b1, b10, b10a1,
##     b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2,
##     b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a,
##     b1a, b1a1, b1a2, b1a3, b2, b2a1, b3, b4, b5, b5a, b6, b6_123,
##     b6a, b6a1, b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8,
##     b9, br, branch, branch1, branch2, branch3, c1, c2, c23a, c3,
##     c4, c5, c6, c6a111, c7, c7ad, c8, c9, clog, clog1, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, freeEn, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     highper, ict1a, ict2a, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label_1, label1, label1a, logb7, logC, logitCost, moneyspent,
##     msdt, n01, n02, n03, n05, n06, n07, n08, n1, n10, n100, n101,
##     n102, n103, n11, n12, n13, n14, n15, n16, n1b, n2, n3, n35,
##     n36, n37, n38, n39, n3posterb, n4, n40, n41, n42, n43, n44,
##     n45, n46, n47, n48, n49, n5, n50, n51, n52, n53, n54, n55,
##     n56, n57, n58, n59, n6, n60, n61, n61a, n62, n62a, n63, n63a,
##     n64, n64a, n65, n65a, n66, n66a, n67, n67a, n68, n68a, n7,
##     n77, n78, n7tren, n8, n88, n89, n8nha, n9, n97, n98, n99,
##     n9khach, noE, noEnvi2, occup1, p, p1, poli4, poli4a, policy,
##     policy_a, policyeffect, reasons, reasons1, s1, Screening,
##     selfhealth, SH1, smostt, taxIn, ter_fa1, ter_in, tertile_fa,
##     tertile_indi, test, unitsdiffi1, var242, w1, w2, w3, w4, wtp
## The following objects are masked from r1 (pos = 4):
## 
##     a, a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a,
##     b1a1, b1a2, b1a3, b2, b2a1, b3, b4, b5, b5a, b6, b6_123, b6a,
##     b6a1, b6a2, b6a3, b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9,
##     br, branch, branch1, branch2, branch3, c1, c2, c23a, c3, c4,
##     c5, c6, c6a111, c7, c8, c9, clog, clog1, COST, cost_inc,
##     cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3, d3a, d4,
##     d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1, educ2, f1,
##     ghi1, ghi2, ghiro2, giadinhkoUH, group_age, group_age1, h1,
##     h10a, h10a1, h10a10, h10a11, h10a11a, h10a2, h10a3, h10a4,
##     h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a, h12a_1, h12log,
##     h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000, ict1a, ict2a,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label_1, label1, label1a,
##     logb7, logC, logitCost, moneyspent, msdt, n01, n02, n03, n05,
##     n06, n07, n08, n1, n10, n100, n101, n102, n103, n11, n12, n13,
##     n14, n15, n16, n1b, n2, n3, n35, n36, n37, n38, n39,
##     n3posterb, n4, n40, n41, n42, n43, n44, n45, n46, n47, n48,
##     n49, n5, n50, n51, n52, n53, n54, n55, n56, n57, n58, n59, n6,
##     n60, n61, n61a, n62, n62a, n63, n63a, n64, n64a, n65, n65a,
##     n66, n66a, n67, n67a, n68, n68a, n7, n77, n78, n7tren, n8,
##     n88, n89, n8nha, n9, n97, n98, n99, n9khach, noE, noEnvi2,
##     occup1, poli4, poli4a, policy, policy_a, policyeffect,
##     reasons, reasons1, s1, Screening, selfhealth, SH1, smostt,
##     taxIn, ter_fa1, ter_in, tertile_fa, tertile_indi, test,
##     unitsdiffi1, var242, w1, w2, w3, w4
## The following objects are masked from newdata2 (pos = 5):
## 
##     a1, advice, ag, age_group, ant, anticam, b1, b10, b10a1,
##     b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2,
##     b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a,
##     b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3,
##     b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br, branch,
##     branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5, c6, c7,
##     c7ad, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, freeEn, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, moneyspent, msdt, n01, n02, n03, n05, n06, n07, n08,
##     n1, n10, n100, n101, n102, n103, n11, n12, n13, n14, n15, n16,
##     n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4, n40, n41,
##     n42, n43, n44, n45, n46, n47, n48, n49, n5, n50, n51, n52,
##     n53, n54, n55, n56, n57, n58, n59, n6, n60, n61, n61a, n62,
##     n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a, n67, n67a,
##     n68, n68a, n7, n77, n78, n7tren, n8, n88, n89, n8nha, n9, n97,
##     n98, n99, n9khach, noEnvi2, occup1, p, p1, policy, policy_a,
##     reasons, reasons1, s1, Screening, selfhealth, SH1, smostt,
##     ter_fa1, ter_in, tertile_fa, tertile_indi, test, unitsdiffi1,
##     var242, w1, w2, w3, w4
## The following objects are masked from r1 (pos = 6):
## 
##     a1, advice, ag, age_group, ant, anticam, b1, b10, b10a1,
##     b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2,
##     b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a,
##     b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3,
##     b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br, branch,
##     branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5, c6, c7,
##     c7ad, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, freeEn, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, moneyspent, msdt, n01, n02, n03, n05, n06, n07, n08,
##     n1, n10, n100, n101, n102, n103, n11, n12, n13, n14, n15, n16,
##     n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4, n40, n41,
##     n42, n43, n44, n45, n46, n47, n48, n49, n5, n50, n51, n52,
##     n53, n54, n55, n56, n57, n58, n59, n6, n60, n61, n61a, n62,
##     n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a, n67, n67a,
##     n68, n68a, n7, n77, n78, n7tren, n8, n88, n89, n8nha, n9, n97,
##     n98, n99, n9khach, noEnvi2, occup1, p, p1, policy, policy_a,
##     reasons, reasons1, s1, Screening, selfhealth, SH1, smostt,
##     ter_fa1, ter_in, tertile_fa, tertile_indi, test, unitsdiffi1,
##     var242, w1, w2, w3, w4
## The following objects are masked from r1 (pos = 7):
## 
##     a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a, b2,
##     b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3, b6a4, b6a5,
##     b6a6, b6a7, b6a7a, b7, b8, b9, br, branch, branch1, branch2,
##     branch3, c1, c2, c23a, c3, c4, c5, c6, c7, c8, c9, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label1, moneyspent, msdt,
##     n01, n02, n03, n05, n06, n07, n08, n1, n10, n100, n101, n102,
##     n103, n11, n12, n13, n14, n15, n16, n1b, n2, n3, n35, n36,
##     n37, n38, n39, n3posterb, n4, n40, n41, n42, n43, n44, n45,
##     n46, n47, n48, n49, n5, n50, n51, n52, n53, n54, n55, n56,
##     n57, n58, n59, n6, n60, n61, n61a, n62, n62a, n63, n63a, n64,
##     n64a, n65, n65a, n66, n66a, n67, n67a, n68, n68a, n7, n77,
##     n78, n7tren, n8, n88, n89, n8nha, n9, n97, n98, n99, n9khach,
##     noEnvi2, occup1, policy, policy_a, reasons, reasons1, s1,
##     Screening, selfhealth, SH1, smostt, ter_fa1, ter_in,
##     tertile_fa, tertile_indi, test, unitsdiffi1, var242, w1, w2,
##     w3, w4
## The following objects are masked from newdata2 (pos = 10):
## 
##     a1, advice, ag, age_group, ant, anticam, b1, b10, b10a1,
##     b10a2, b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2,
##     b11a3, b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a,
##     b1a, b2, b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3,
##     b6a4, b6a5, b6a6, b6a7, b6a7a, b7, b8, b9, br, branch,
##     branch1, branch2, branch3, c1, c2, c23a, c3, c4, c5, c6, c7,
##     c7ad, c8, c9, COST, cost_inc, cost1, costincrease, ct, d1,
##     d10, d11, d1a, d2, d3, d3a, d4, d5, d6, d7, d8, d9, Decision,
##     e1, e2, edu, educ1, educ2, f1, freeEn, ghi1, ghi2, ghiro2,
##     giadinhkoUH, group_age, group_age1, h1, h10a, h10a1, h10a10,
##     h10a11, h10a11a, h10a2, h10a3, h10a4, h10a5, h10a6, h10a7,
##     h10a8, h10a9, h12, h12a, h12a_1, h12log, h13, h2, h3, h4, h5,
##     h6, h7, h8, h9, ha000, itc1, itc2, l1, l2, l3, l4, l5, l6,
##     label1, moneyspent, msdt, n01, n02, n03, n05, n06, n07, n08,
##     n1, n10, n100, n101, n102, n103, n11, n12, n13, n14, n15, n16,
##     n1b, n2, n3, n35, n36, n37, n38, n39, n3posterb, n4, n40, n41,
##     n42, n43, n44, n45, n46, n47, n48, n49, n5, n50, n51, n52,
##     n53, n54, n55, n56, n57, n58, n59, n6, n60, n61, n61a, n62,
##     n62a, n63, n63a, n64, n64a, n65, n65a, n66, n66a, n67, n67a,
##     n68, n68a, n7, n77, n78, n7tren, n8, n88, n89, n8nha, n9, n97,
##     n98, n99, n9khach, noEnvi2, occup1, p, p1, policy, policy_a,
##     reasons, reasons1, s1, Screening, selfhealth, SH1, smostt,
##     ter_fa1, ter_in, tertile_fa, tertile_indi, test, unitsdiffi1,
##     var242, w1, w2, w3, w4, wtp
## The following objects are masked from r:
## 
##     a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a, b2,
##     b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3, b6a4, b6a5,
##     b6a6, b6a7, b6a7a, b7, b8, b9, br, branch, branch1, branch2,
##     branch3, c1, c2, c23a, c3, c4, c5, c6, c7, c8, c9, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label1, moneyspent, msdt,
##     n01, n02, n03, n05, n06, n07, n08, n1, n10, n100, n101, n102,
##     n103, n11, n12, n13, n14, n15, n16, n1b, n2, n3, n35, n36,
##     n37, n38, n39, n3posterb, n4, n40, n41, n42, n43, n44, n45,
##     n46, n47, n48, n49, n5, n50, n51, n52, n53, n54, n55, n56,
##     n57, n58, n59, n6, n60, n61, n61a, n62, n62a, n63, n63a, n64,
##     n64a, n65, n65a, n66, n66a, n67, n67a, n68, n68a, n7, n77,
##     n78, n7tren, n8, n88, n89, n8nha, n9, n97, n98, n99, n9khach,
##     noEnvi2, occup1, policy, policy_a, reasons, reasons1, s1,
##     Screening, selfhealth, SH1, smostt, ter_fa1, ter_in,
##     tertile_fa, tertile_indi, test, unitsdiffi1, var242, w1, w2,
##     w3, w4
## The following objects are masked from r1 (pos = 12):
## 
##     a1, advice, ag, age_group, anticam, b1, b10, b10a1, b10a2,
##     b10a3, b10a4, b10a5, b10a6, b10a7, b11, b11a, b11a2, b11a3,
##     b12, b12a, b13, b14, b15, b16, b16a, b17, b18, b18a, b1a, b2,
##     b2a1, b3, b4, b5, b5a, b6, b6a, b6a1, b6a2, b6a3, b6a4, b6a5,
##     b6a6, b6a7, b6a7a, b7, b8, b9, br, branch, branch1, branch2,
##     branch3, c1, c2, c23a, c3, c4, c5, c6, c7, c8, c9, COST,
##     cost_inc, cost1, costincrease, ct, d1, d10, d11, d1a, d2, d3,
##     d3a, d4, d5, d6, d7, d8, d9, Decision, e1, e2, edu, educ1,
##     educ2, f1, ghi1, ghi2, ghiro2, giadinhkoUH, group_age,
##     group_age1, h1, h10a, h10a1, h10a10, h10a11, h10a11a, h10a2,
##     h10a3, h10a4, h10a5, h10a6, h10a7, h10a8, h10a9, h12, h12a,
##     h12a_1, h12log, h13, h2, h3, h4, h5, h6, h7, h8, h9, ha000,
##     itc1, itc2, l1, l2, l3, l4, l5, l6, label1, moneyspent, msdt,
##     n01, n02, n03, n05, n06, n07, n08, n1, n10, n100, n101, n102,
##     n103, n11, n12, n13, n14, n15, n16, n1b, n2, n3, n35, n36,
##     n37, n38, n39, n3posterb, n4, n40, n41, n42, n43, n44, n45,
##     n46, n47, n48, n49, n5, n50, n51, n52, n53, n54, n55, n56,
##     n57, n58, n59, n6, n60, n61, n61a, n62, n62a, n63, n63a, n64,
##     n64a, n65, n65a, n66, n66a, n67, n67a, n68, n68a, n7, n77,
##     n78, n7tren, n8, n88, n89, n8nha, n9, n97, n98, n99, n9khach,
##     noEnvi2, occup1, policy, policy_a, reasons, reasons1, s1,
##     Screening, selfhealth, SH1, smostt, ter_fa1, ter_in,
##     tertile_fa, tertile_indi, test, unitsdiffi1, var242, w1, w2,
##     w3, w4

10 Trich cac bien can lay trinh bay trong bang

data1=subset(newdata2, select=c( "age_group", "d1a", "educ2", "ter_in", "selfhealth", "c1", "smostt","b6a", "h1", "b18a", "b16a","label1", "freeEn", "c7ad", "ant", "p", "wtp"))

attach(data1)
## The following objects are masked from newdata2 (pos = 3):
## 
##     age_group, ant, b16a, b18a, b6a, c1, c7ad, d1a, educ2, freeEn,
##     h1, label1, p, selfhealth, smostt, ter_in, wtp
## The following objects are masked from newdata2 (pos = 4):
## 
##     age_group, ant, b16a, b18a, b6a, c1, c7ad, d1a, educ2, freeEn,
##     h1, label1, p, selfhealth, smostt, ter_in, wtp
## The following objects are masked from r1 (pos = 5):
## 
##     age_group, b16a, b18a, b6a, c1, d1a, educ2, h1, label1,
##     selfhealth, smostt, ter_in
## The following objects are masked from newdata2 (pos = 6):
## 
##     age_group, ant, b16a, b18a, b6a, c1, c7ad, d1a, educ2, freeEn,
##     h1, label1, p, selfhealth, smostt, ter_in
## The following objects are masked from r1 (pos = 7):
## 
##     age_group, ant, b16a, b18a, b6a, c1, c7ad, d1a, educ2, freeEn,
##     h1, label1, p, selfhealth, smostt, ter_in
## The following objects are masked from r1 (pos = 8):
## 
##     age_group, b16a, b18a, b6a, c1, d1a, educ2, h1, label1,
##     selfhealth, smostt, ter_in
## The following objects are masked from newdata2 (pos = 11):
## 
##     age_group, ant, b16a, b18a, b6a, c1, c7ad, d1a, educ2, freeEn,
##     h1, label1, p, selfhealth, smostt, ter_in, wtp
## The following objects are masked from r:
## 
##     age_group, b16a, b18a, b6a, c1, d1a, educ2, h1, label1,
##     selfhealth, smostt, ter_in
## The following objects are masked from r1 (pos = 13):
## 
##     age_group, b16a, b18a, b6a, c1, d1a, educ2, h1, label1,
##     selfhealth, smostt, ter_in

11 chay packages install.packages(“moonBook”)

library(moonBook)
## Warning: package 'moonBook' was built under R version 3.2.5

12 Xem ket qua 1

mytable(wtp~., data=data1)
## 
##        Descriptive Statistics by 'wtp'      
## _____________________________________________ 
##                      0           1        p  
##                   (N=461)     (N=362)  
## --------------------------------------------- 
##  age_group                              0.026
##    - group18-29 191 (41.4%) 111 (30.7%)      
##    - gr3039     76 (16.5%)  64 (17.7%)       
##    - gr4049     94 (20.4%)  90 (24.9%)       
##    - gr5059     73 (15.8%)  65 (18.0%)       
##    - 60plus     27 ( 5.9%)  31 ( 8.6%)       
##  d1a                                    0.301
##    - none       180 (39.0%) 127 (35.3%)      
##    - married    281 (61.0%) 233 (64.7%)      
##  educ2                                  0.017
##    - 1          96 (21.2%)  104 (29.1%)      
##    - 2          220 (48.7%) 144 (40.3%)      
##    - 3          136 (30.1%) 109 (30.5%)      
##  ter_in                                 0.108
##    - 1          191 (42.2%) 125 (35.0%)      
##    - 2          121 (26.7%) 103 (28.9%)      
##    - 3          141 (31.1%) 129 (36.1%)      
##  selfhealth                             0.526
##    - notwell    254 (55.1%) 190 (52.6%)      
##    - good       207 (44.9%) 171 (47.4%)      
##  c1                                     0.043
##    - 1          398 (86.3%) 329 (91.1%)      
##    - 2          63 (13.7%)  32 ( 8.9%)       
##  smostt                                 0.000
##    - light      127 (27.5%) 85 (23.5%)       
##    - medium     173 (37.5%) 101 (28.0%)      
##    - heavy      161 (34.9%) 175 (48.5%)      
##  b6a                                    0.004
##    - no         377 (83.2%) 325 (90.5%)      
##    - yes        76 (16.8%)  34 ( 9.5%)       
##  h1                                     0.038
##    - 0          169 (36.7%) 159 (44.0%)      
##    - 1          292 (63.3%) 202 (56.0%)      
##  b18a                                   0.002
##    - Good       154 (33.6%) 159 (44.3%)      
##    - bad        304 (66.4%) 200 (55.7%)      
##  b16a                                   0.000
##    - 0          64 (13.9%)  110 (30.6%)      
##    - 1          395 (86.1%) 250 (69.4%)      
##  label1                                 0.001
##    - 0          383 (83.3%) 265 (73.6%)      
##    - 1          77 (16.7%)  95 (26.4%)       
##  freeEn                                 0.305
##    - 0          346 (75.4%) 284 (78.7%)      
##    - 1          113 (24.6%) 77 (21.3%)       
##  c7ad                                   0.242
##    - 0          302 (65.5%) 252 (69.6%)      
##    - 1          159 (34.5%) 110 (30.4%)      
##  ant                                    0.002
##    - 0          244 (52.9%) 152 (42.0%)      
##    - 1          217 (47.1%) 210 (58.0%)      
##  p                                      0.074
##    - 0          134 (29.2%) 85 (23.6%)       
##    - 1          145 (31.6%) 107 (29.7%)      
##    - 2          180 (39.2%) 168 (46.7%)      
## ---------------------------------------------

13 xem ket qua 2

out=mytable(wtp~.,data=data1)

myhtml(out)    
## <head><style>
##         table, th, td {
##         border: 1px solid #bcbcbc;
##     } </style></head>
## <table cellpadding=10 cellspacing=5><caption>Descriptive Statistics by 'wtp'</caption><tr>
## <th>wtp</th><th>0<br/>(N=461)</th><th>1<br/>(N=362)</th><th>p</th></tr>
## <tr><td>age_group     </td><td></td><td></td><td>0.026</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; group18-29</td><td>191 (41.4%)</td><td>111 (30.7%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; gr3039    </td><td>76 (16.5%)</td><td>64 (17.7%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; gr4049    </td><td>94 (20.4%)</td><td>90 (24.9%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; gr5059    </td><td>73 (15.8%)</td><td>65 (18.0%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 60plus    </td><td>27 ( 5.9%)</td><td>31 ( 8.6%)</td><td></td></tr>
## <tr><td>d1a           </td><td></td><td></td><td>0.301</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; none      </td><td>180 (39.0%)</td><td>127 (35.3%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; married   </td><td>281 (61.0%)</td><td>233 (64.7%)</td><td></td></tr>
## <tr><td>educ2         </td><td></td><td></td><td>0.017</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 1         </td><td>96 (21.2%)</td><td>104 (29.1%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 2         </td><td>220 (48.7%)</td><td>144 (40.3%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 3         </td><td>136 (30.1%)</td><td>109 (30.5%)</td><td></td></tr>
## <tr><td>ter_in        </td><td></td><td></td><td>0.108</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 1         </td><td>191 (42.2%)</td><td>125 (35.0%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 2         </td><td>121 (26.7%)</td><td>103 (28.9%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 3         </td><td>141 (31.1%)</td><td>129 (36.1%)</td><td></td></tr>
## <tr><td>selfhealth    </td><td></td><td></td><td>0.526</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; notwell   </td><td>254 (55.1%)</td><td>190 (52.6%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; good      </td><td>207 (44.9%)</td><td>171 (47.4%)</td><td></td></tr>
## <tr><td>c1            </td><td></td><td></td><td>0.043</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 1         </td><td>398 (86.3%)</td><td>329 (91.1%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 2         </td><td>63 (13.7%)</td><td>32 ( 8.9%)</td><td></td></tr>
## <tr><td>smostt        </td><td></td><td></td><td>0.000</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; light     </td><td>127 (27.5%)</td><td>85 (23.5%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; medium    </td><td>173 (37.5%)</td><td>101 (28.0%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; heavy     </td><td>161 (34.9%)</td><td>175 (48.5%)</td><td></td></tr>
## <tr><td>b6a           </td><td></td><td></td><td>0.004</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; no        </td><td>377 (83.2%)</td><td>325 (90.5%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; yes       </td><td>76 (16.8%)</td><td>34 ( 9.5%)</td><td></td></tr>
## <tr><td>h1            </td><td></td><td></td><td>0.038</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 0         </td><td>169 (36.7%)</td><td>159 (44.0%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 1         </td><td>292 (63.3%)</td><td>202 (56.0%)</td><td></td></tr>
## <tr><td>b18a          </td><td></td><td></td><td>0.002</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; Good      </td><td>154 (33.6%)</td><td>159 (44.3%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; bad       </td><td>304 (66.4%)</td><td>200 (55.7%)</td><td></td></tr>
## <tr><td>b16a          </td><td></td><td></td><td>0.000</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 0         </td><td>64 (13.9%)</td><td>110 (30.6%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 1         </td><td>395 (86.1%)</td><td>250 (69.4%)</td><td></td></tr>
## <tr><td>label1        </td><td></td><td></td><td>0.001</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 0         </td><td>383 (83.3%)</td><td>265 (73.6%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 1         </td><td>77 (16.7%)</td><td>95 (26.4%)</td><td></td></tr>
## <tr><td>freeEn        </td><td></td><td></td><td>0.305</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 0         </td><td>346 (75.4%)</td><td>284 (78.7%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 1         </td><td>113 (24.6%)</td><td>77 (21.3%)</td><td></td></tr>
## <tr><td>c7ad          </td><td></td><td></td><td>0.242</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 0         </td><td>302 (65.5%)</td><td>252 (69.6%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 1         </td><td>159 (34.5%)</td><td>110 (30.4%)</td><td></td></tr>
## <tr><td>ant           </td><td></td><td></td><td>0.002</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 0         </td><td>244 (52.9%)</td><td>152 (42.0%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 1         </td><td>217 (47.1%)</td><td>210 (58.0%)</td><td></td></tr>
## <tr><td>p             </td><td></td><td></td><td>0.074</td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 0         </td><td>134 (29.2%)</td><td>85 (23.6%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 1         </td><td>145 (31.6%)</td><td>107 (29.7%)</td><td></td></tr>
## <tr><td> &nbsp;&nbsp;&nbsp; 2         </td><td>180 (39.2%)</td><td>168 (46.7%)</td><td></td></tr>
## </table>