An attempt to understand economic inequality from a non-abstract perspective

Zhengyuan Gao
Macro-Lunch @IRES 03/21/2017

This talk is about Section 6.1, 6.2 and 7 in “Uncertainty in Economic Growth and Inequality”. Slides and (codes) available: http://rpubs.com/larcenciel/uncertainty

An Old Story

“I can calculate the motion of heavenly bodies, but not the madness of people.” — Isaac Newton's complain on South Sea Bubble

Newton's (second) law \[ Force = mass \times acceleration \]
or say \[ y=f(x_1,x_2)=x_1 \times x_2 \]

Newton's law in social science

\[ y = f(x_1,x_2,\dots,x_N) \]

What are \( \{x_i\}_{i\leq N} \)? What is \( f(\cdot) \)? How big is \( N \)?

An Attempt to Characterize the Madness

A probabilistic counterpart of Newton's law (by focusing on uncertainty).

An economic variable \( x \): \[ \mbox{individual } i \mbox{ at time } t \mbox{ has } X_t^i. \]

The change of \( X_t^i \) follows a probabilistic law \( \mathbb{P} \): \[ X_t^i \sim \mathbb{P}(x,t). \]

The (stationary) aggregate follows the same law \( \mathbb{P} \): \[ \sum_{i=1}^N X_t^i \sim \mathbb{P}\left(\sum_{i=1}^N x^i,t\right). \]

Infinite divisible law (de Finetti, 1929)

\[ Y_t = \sum_{i=1}^N X_t^i \overset{d}{=} X_t^1 + X_t^2 + \cdots + X_t^N \] or \[ \mathbb{P}(y,t) = \mathbb{P}(x^{1},t) \otimes \mathbb{P}(x^{2},t) \otimes \cdots \otimes \mathbb{P}(x^{N},t) \]

\[ \begin{array}{l} \mathbb{P}(x^{1},t)\quad\mbox{Adam's law}\\ \mathbb{P}(x^{1},t),\mathbb{P}(x^{2},t)\quad\mbox{Adam's and Eve's laws}\\ \vdots \quad \quad \quad \vdots \quad \quad \ddots\\ \mathbb{P}(x^{1},t),\mathbb{P}(x^{2},t),\ldots,\mathbb{P}(x^{N},t)\quad\mbox{Current individuals' laws} \end{array} \]

Growth and Inequality

Growth: increases of \( x \)

Inequality: differences amongst \( \{x^i\}_{i\leq N} \)

Consider economic growth and inequality as a man-made configuration under the \( \mathbb{P} \)-law.

A growth event happens in \( \mathbb{P}(x,t) \)-law.

\( \sum_{i=1}^N X_t^i \) is distributed in \( \mathbb{P}\left(\sum^N_{i=1} x^i,t \right) \)-law.

Deeper Parameters

Parameters of individual \( \mathbb{P} \)-law may be different from those in the aggregation.

Aggregatable (Heterogenous) parameters

\( \alpha_i \): Probability (unit of time) of a significant growth event for individual \( i \)

\( c(x) \): Size of a significant growth.

Non-aggregatable (Homogenous) parameters

\( \beta \): Probability (unit of time) of a trivial growth event for everyone.

\( 1/\beta \): Size of a trivial growth.

Parameterization

\( \mathbb{P} \)-law is identifiable dynamically in terms of \( (\alpha,\beta,c(x)) \).

\[ \frac{\partial}{\partial t}\mathbb{P}(x,t)=-c(x) \frac{\partial\mathbb{P}(x,t)}{\partial x}+\alpha\left[\int\left(\mathbb{W}(x|x')\mathbb{P}(x',t)\right)dx'-\mathbb{P}(x,t)\right] \]

\( \mathbb{W}(x|x') \) contains the parameter \( \beta \).

\[ \mbox{Equilibrium solution: } \mathbb{P}(x)=\frac{\beta^{\alpha}x^{\alpha-1}e^{-\beta x}}{\Gamma(\alpha)}\sim\mbox{Gamma}(\alpha,\beta) \]

\[ \mbox{Aggregation: } X_{t}^{i} +X_{t}^{j} \sim\mbox{Gamma}(\alpha_{i}+\alpha_{j},\beta) \]

\[ \mbox{Evolution: } C\times \sum_{i=1}^{N} X_{t}^i\sim\mbox{Gamma}(\sum_{i=1}^{N}\alpha_i,\beta/C) \]

Gamma Distribution

\( \mathbb{E}[X] = \frac{\alpha}{\beta} \) and \( \mbox{Var}[X] = \frac{\alpha}{\beta^2} \)

plot of chunk unnamed-chunk-1

\( \alpha = (1,2,3,4,5), \beta = (0.1,0.2,0.3,0.4,0.5),\frac{\alpha}{\beta} = 10 \)

plot of chunk unnamed-chunk-2

\( \alpha= 1 \)

\( \beta = (0.5,0.4,0.3,0.2,0.1) \)

\( \frac{\alpha}{\beta} = (2,2.5,3.3,5,10) \)

plot of chunk unnamed-chunk-3

\( \alpha= (1,2,3,4,5) \)

\( \beta = 0.5 \)

\( \frac{\alpha}{\beta} = (2,4,6,8,10) \)

plot of chunk unnamed-chunk-4

\( \alpha= (1,1.8,1.6,3.6,1.6) \)

\( \beta = (0.1,0.09,0.08,0.09,0.04) \)

\( \frac{\alpha}{\beta} = (10,20,20,40,40) \)

plot of chunk unnamed-chunk-5

Non-stationary Aggregates

For a non-linear one-to-one function \( g(\cdot) \) \[ Y_{t}=g\left( \sum_{i=1}^{N}X_{t}^{i} \right) \] is the non-stationary aggregate \( Y_t \sim \mathbb{Q}(x,t). \)

Mean field of \( Y_t \): \( m_{Y}(t)=\int y\mathbb{Q}(y,t)dy. \)

Reduce form for this aggregation

\[ \begin{cases} \frac{dm_{Y}(t)}{dt} & = \mbox{Constant}+\mbox{Coef}_{1}m_{Y}(t)+\mbox{Coef}_{2}\sigma_{Y}^{2}(t) \\ \frac{d\sigma_{Y}^{2}(t)}{dt} & =\mbox{Constant}+\mbox{Coef}_{3}m_{Y}^{2}(t)+\mbox{Coef}_{4}\sigma_{Y}^{2}(t) \end{cases} \]

U.S. GDP 1994-2015

plot of chunk unnamed-chunk-6

plot of chunk unnamed-chunk-7

\[ \frac{dm_{Y}(t)}{dt} = \mbox{Intercept}+\mbox{y[,2]}m_{Y}(t)+\mbox{y[,3]}\sigma_{Y}^{2}(t) \]

# Mean field equaiton
GDP.ar = arima(GDP.growth, order = c(1,0,0))
sigma2 = GDP.ar$resid^2
lagGDP.growth =lag(GDP.growth,1)
lagGDP.growth[is.na(lagGDP.growth)]=0
y = cbind(GDP.growth,lagGDP.growth,sigma2)
GDP.lm = lm(y[,1]~ y[,2] + y[,3])
coef(summary(GDP.lm))
                 Estimate   Std. Error   t value     Pr(>|t|)
(Intercept)  1.869442e+02 3.519560e+01  5.311578 8.939631e-07
y[, 2]       2.013500e-01 1.002543e-01  2.008392 4.785333e-02
y[, 3]      -8.284303e-04 1.897569e-04 -4.365746 3.628768e-05

plot of chunk unnamed-chunk-9

plot of chunk unnamed-chunk-10


Call:
garch(x = GDP.lm$residuals, trace = FALSE)

Model:
GARCH(1,1)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.2722 -0.5816 -0.0272  0.4895  3.7041 

Coefficient(s):
    Estimate  Std. Error  t value Pr(>|t|)
a0 4.996e+04          NA       NA       NA
a1 1.006e-10          NA       NA       NA
b1 6.293e-02          NA       NA       NA

Diagnostic Tests:
    Jarque Bera Test

data:  Residuals
X-squared = 17.798, df = 2, p-value = 0.0001365


    Box-Ljung test

data:  Squared.Residuals
X-squared = 0.034938, df = 1, p-value = 0.8517

\[ \frac{d\sigma_{Y}^{2}(t)}{dt} =\mbox{Intercept}+\mbox{s[,2]} m_{Y}^{2}(t)+\mbox{s[,3]}\sigma_{Y}^{2}(t) \]

# Mean field volatility
sigma.dif = diff(sigma2)
sigma.dif[is.na(sigma.dif)]=0
s = cbind(sigma.dif, lagGDP.growth^2, sigma2)
s.lm = lm(s[,1]~s[,2]+s[,3])
coef(summary(s.lm))
                 Estimate   Std. Error    t value     Pr(>|t|)
(Intercept) -5.969591e+04 1.894993e+04 -3.1501911 2.277507e-03
s[, 2]       9.324156e-02 9.812031e-02  0.9502779 3.447635e-01
s[, 3]       7.303218e-01 1.141915e-01  6.3955864 9.268704e-09

plot of chunk unnamed-chunk-13

plot of chunk unnamed-chunk-14

Structural Aggregates

High order information can be exogenized by extracting the high order effects of \( (X_t^1,\dots,X_t^N) \).

Structural form for this aggregation

\[ \begin{cases} m_{Y}(t) & =\mathbb{E}_{t}\left[g\left(\sum X_{t}^{i}\right)\mathbb{L}(t)\right]\\ \frac{dm_{Y}(t)}{dt} & =\theta_{t}\, m_{Y}(t)+e_{t} \\ X_{t} & \sim\mathbb{P}(x,t) \end{cases} \]

where \( \mathbb{L}(t) \) is the likelihood ratio for \( Y_t \) and \( X_t \); \( \theta_{t} \) and \( e_{t} \) are time varying constants.

Income Data (Variables)

Samples: People 15 years old and over

Measurement: Total money income

Source: U.S. Census Bureau, Current Population Survey

 [1] "Year Total"           "Total With Income"    "$1 to $2,499 or Loss"
 [4] "$2,500 to $4,999"     "$5,000 to $7,499"     "$7,500 to $9,999"    
 [7] "$10,000 to $12,499"   "$12,500 to $14,999"   "$15,000 to $17,499"  
[10] "$17,500 to $19,999"   "$20,000 to $22,499"   "$22,500 to $24,999"  
[13] "$25,000 to $27,499"   "$27,500 to $29,999"   "$30,000 to $32,499"  
[16] "$32,500 to $34,999"   "$35,000 to $37,499"   "$37,500 to $39,999"  
[19] "$40,000 to $42,499"   "$42,500 to $44,999"   "$45,000 to $47,499"  
[22] "$47,500 to $49,999"   "$50,000 to $52,499"   "$52,500 to $54,999"  
[25] "$55,000 to $57,499"   "$57,500 to $59,999"   "$60,000 to $62,499"  
[28] "$62,500 to $64,999"   "$65,000 to $67,499"   "$67,500 to $69,999"  
[31] "$70,000 to $72,499"   "$72,500 to $74,999"   "$75,000 to $77,499"  
[34] "$77,500 to $79,999"   "$80,000 to $82,499"   "$82,500 to $84,999"  
[37] "$85,000 to $87,499"   "$87,500 to $89,999"   "$90,000 to $92,499"  
[40] "$92,500 to $94,999"   "$95,000 to $97,499"   "$97,500 to $99,999"  
[43] "$100,000 and Over"   

Income Data (1994 - 1996)

Numbers in thousands

     [,1]   [,2]  [,3]  [,4]  [,5]  [,6]  [,7]  [,8]  [,9] [,10] [,11]
[1,] 1994 186402 18964 13353 17474 13683 14639 10750 11500  8656  9812
[2,] 1995 188073 17946 12736 16638 13553 14389 10358 11855  8691 10383
[3,] 1996 189997 16525 11984 16897 13358 14350 10551 11030  8740 10276
     [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22]
[1,]  6710  8106  5081  6748  3752  5283  2991  4487  2090  2625  1687
[2,]  6864  8197  5247  7375  3976  5410  3092  4624  2264  2970  1923
[3,]  7336  8784  5339  7664  4007  5677  3320  4898  2500  3091  2015
     [,23] [,24] [,25] [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33]
[1,]  2744  1336  1547  1022  1589   653   821   514   748   449   699
[2,]  2871  1350  1813   990  1709   789  1100   586   894   417   832
[3,]  3265  1485  1734   971  1956   889  1181   632   936   523   787
     [,34] [,35] [,36] [,37] [,38] [,39] [,40] [,41] [,42] [,43]
[1,]   357   542   214   298   298   208   338   179   195   128
[2,]   376   601   347   333   180   356   207   212   138    72
[3,]   444   689   313   479   288   369   237   266   166    97

Income Data (2013 - 2015)

Numbers in thousands

      [,1]   [,2]  [,3] [,4] [,5]  [,6]  [,7] [,8]  [,9] [,10] [,11] [,12]
[20,] 2013 222003 14466 6764 9389 10931 12784 9529 11404  7966 10987  7346
[21,] 2014 222972 14724 6613 8314 10795 13085 8898 10694  8101 11315  6894
[22,] 2015 226762 14689 6262 7657 10551 12474 8995 10672  7931 11031  6962
      [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23]
[20,]  9047  5501  9462  4424  6983  4289  7824  3258  5116  3245  5939
[21,]  9215  5640  9910  4234  7785  3941  8044  3042  5348  3113  6528
[22,]  9623  5535 10399  4429  7975  3930  8091  3113  5718  3221  7130
      [,24] [,25] [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34]
[20,]  2249  4018  1984  4883  1559  2535  1316  3191  1215  2353  1051
[21,]  2467  3968  1944  4806  1707  3022  1423  3227  1299  2753  1046
[22,]  2489  3834  2066  5047  1894  3289  1493  3264  1372  2922  1307
      [,35] [,36] [,37] [,38] [,39] [,40] [,41] [,42] [,43]
[20,]  2213   982  1490   992  1742   725  1071   672 19108
[21,]  2571  1001  1527   791  1738   683   976   723 19063
[22,]  2725  1021  1508   856  1966   712  1090   768 20755

Income Distribution in 2015

plot of chunk unnamed-chunk-18

plot of chunk unnamed-chunk-19

Parameters

plot of chunk unnamed-chunk-20

plot of chunk unnamed-chunk-21

Parameters

plot of chunk unnamed-chunk-22

plot of chunk unnamed-chunk-23

Endogeneity

\[ \mathbb{E}\left[\sum_{i=1}^{N}X_{t}(\omega^{i})\right] =\frac{\alpha_{t}}{\beta_{t}}=\mbox{Cons}+\mbox{Coef}_{1}\times\ln m_{Y}(t) \]

GDP.growth.rate = diff(log(GDP.sub)) 
reg.pagr = lm(parm~GDP.growth.rate)

plot of chunk unnamed-chunk-25

Endogeneity

\[ \hat{\varepsilon}_t = \mbox{Intercept} + \mbox{Coef} \times \frac{\alpha_t}{\beta_t} \]

reg.endo = lm(reg.pagr$resid~parm)
summary(reg.endo)

Call:
lm(formula = reg.pagr$resid ~ parm)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.64393 -0.06395  0.15498  0.33365  0.63271 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -8.99869    1.04297  -8.628 3.56e-08 ***
parm         0.79041    0.09101   8.685 3.20e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5587 on 20 degrees of freedom
Multiple R-squared:  0.7904,    Adjusted R-squared:  0.7799 
F-statistic: 75.42 on 1 and 20 DF,  p-value: 3.204e-08

Structural Estimate

\[ \ln m_{Y}(t+1)-\ln m_{Y}(t) =\theta(t)+\varepsilon_{1,t}+\frac{\varepsilon_{2,t}}{\sum_{i=1}^{N}X_{t}(\omega^{i})}. \]

# After filtering, theta is available
resid.f   = GDP.growth.rate - theta
reg.res = lm(resid.f~parm)
summary(reg.res)

Call:
lm(formula = resid.f ~ parm)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.044721 -0.005027  0.004239  0.008245  0.016058 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.022986   0.027492   0.836    0.413
parm        -0.002483   0.002399  -1.035    0.313

Residual standard error: 0.01473 on 20 degrees of freedom
Multiple R-squared:  0.05084,   Adjusted R-squared:  0.00338 
F-statistic: 1.071 on 1 and 20 DF,  p-value: 0.313

Structural Estimate

plot of chunk unnamed-chunk-29

plot of chunk unnamed-chunk-30

Filtered Growth Rate (1994 - 2015)

plot of chunk unnamed-chunk-31

Some Remarks

  • Look for a law that some conditions, so far as being observable, can invariably be found.

  • Growth, inequality, and some other phenomena may be integrable.

  • Fundamental parameters may not be affected by superficial policies.

  • “Conspiracy theory” of observable “truths”.

  • Finally, at least I understand more about inequality.

Modeling - Mr Palomar's approach

“A model is by definition that in which nothing has to be changed, that which works perfectly; whereas reality, as we see clearly, does not work and constantly falls to pieces; so we must force it, more or less roughly, to assume the form of the model.

In Mr Palomar’s life there was a period when his rule was this: first, to construct in his mind a model, the most perfect, logical, geometrical model possible; second, to see if the model adapted to the practical situations observed in experience; third, to make corrections necessary for model and reality to coincide.”

Italo Calvino, 'The model of models’ in Mr Palomar (1983)