Here are the 10 gambles from Holt & Laury (2002)
| index | a.x | a.px | a.y | a.py | b.x | b.px | b.y | b.py | a.ev | b.ev | a.var | b.var | ev.diff | high.ev.option |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 0.1 | 1.6 | 0.9 | 3.85 | 0.1 | 0.1 | 0.9 | 1.64 | 0.48 | 0.01 | 1.27 | 1.17 | a |
| 2 | 2 | 0.2 | 1.6 | 0.8 | 3.85 | 0.2 | 0.1 | 0.8 | 1.68 | 0.85 | 0.03 | 2.25 | 0.83 | a |
| 3 | 2 | 0.3 | 1.6 | 0.7 | 3.85 | 0.3 | 0.1 | 0.7 | 1.72 | 1.23 | 0.03 | 2.95 | 0.49 | a |
| 4 | 2 | 0.4 | 1.6 | 0.6 | 3.85 | 0.4 | 0.1 | 0.6 | 1.76 | 1.60 | 0.04 | 3.38 | 0.16 | a |
| 5 | 2 | 0.5 | 1.6 | 0.5 | 3.85 | 0.5 | 0.1 | 0.5 | 1.80 | 1.98 | 0.04 | 3.52 | -0.18 | b |
| 6 | 2 | 0.6 | 1.6 | 0.4 | 3.85 | 0.6 | 0.1 | 0.4 | 1.84 | 2.35 | 0.04 | 3.38 | -0.51 | b |
| 7 | 2 | 0.7 | 1.6 | 0.3 | 3.85 | 0.7 | 0.1 | 0.3 | 1.88 | 2.73 | 0.03 | 2.95 | -0.84 | b |
| 8 | 2 | 0.8 | 1.6 | 0.2 | 3.85 | 0.8 | 0.1 | 0.2 | 1.92 | 3.10 | 0.03 | 2.25 | -1.18 | b |
| 9 | 2 | 0.9 | 1.6 | 0.1 | 3.85 | 0.9 | 0.1 | 0.1 | 1.96 | 3.48 | 0.01 | 1.27 | -1.52 | b |
| 10 | 2 | 1.0 | 1.6 | 0.0 | 3.85 | 1.0 | 0.1 | 0.0 | 2.00 | 3.85 | 0.00 | 0.00 | -1.85 | b |
Here are the gambles represented in a coordinate space:
For each gamble pair, I calculated the probability that gamble A would beat gamble B given a one shot game. For example, for pair 4, the probability that gamble A (the safe gamble) wins is \(.40 \times 0.6 + 0.60 \times 0.60 = 0.60\). Here are the results
| index | ev.diff | high.ev.option | p.a.wins |
|---|---|---|---|
| 1 | 1.17 | a | 0.9 |
| 2 | 0.83 | a | 0.8 |
| 3 | 0.49 | a | 0.7 |
| 4 | 0.16 | a | 0.6 |
| 5 | -0.18 | b | 0.5 |
| 6 | -0.51 | b | 0.4 |
| 7 | -0.84 | b | 0.3 |
| 8 | -1.18 | b | 0.2 |
| 9 | -1.52 | b | 0.1 |
| 10 | -1.85 | b | 0.0 |