Original data.
Removing the missing values.
With missing values.
After removing the missing values.
##
## Call:
## FAMD(base = finalData[, -c(1, 2)], ncp = 25, graph = FALSE)
##
##
## Eigenvalues
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6
## Variance 5.553 2.656 2.172 1.868 1.351 1.165
## % of var. 22.211 10.624 8.689 7.471 5.404 4.658
## Cumulative % of var. 22.211 32.835 41.525 48.996 54.400 59.058
## Dim.7 Dim.8 Dim.9 Dim.10 Dim.11 Dim.12
## Variance 1.079 1.001 1.000 0.998 0.927 0.862
## % of var. 4.315 4.004 4.001 3.990 3.708 3.449
## Cumulative % of var. 63.373 67.378 71.379 75.369 79.077 82.526
## Dim.13 Dim.14 Dim.15 Dim.16 Dim.17 Dim.18
## Variance 0.795 0.696 0.625 0.433 0.416 0.396
## % of var. 3.181 2.785 2.499 1.732 1.662 1.583
## Cumulative % of var. 85.707 88.492 90.991 92.723 94.385 95.968
## Dim.19 Dim.20 Dim.21 Dim.22 Dim.23 Dim.24
## Variance 0.311 0.273 0.213 0.143 0.062 0.006
## % of var. 1.243 1.093 0.853 0.572 0.247 0.022
## Cumulative % of var. 97.211 98.304 99.158 99.730 99.976 99.999
## Dim.25
## Variance 0.000
## % of var. 0.001
## Cumulative % of var. 100.000
##
## Individuals (the 10 first)
## Dist Dim.1 ctr cos2 Dim.2 ctr cos2 Dim.3
## 1 | 3.811 | -1.463 0.000 0.147 | -0.307 0.000 0.007 | 0.369
## 2 | 3.825 | -1.454 0.000 0.144 | -0.310 0.000 0.007 | 0.371
## 3 | 3.801 | -1.499 0.000 0.155 | -0.292 0.000 0.006 | 0.435
## 4 | 3.835 | -1.600 0.000 0.174 | -0.300 0.000 0.006 | 0.480
## 5 | 3.840 | -2.025 0.001 0.278 | 0.522 0.000 0.019 | -0.094
## 6 | 3.862 | -1.916 0.001 0.246 | 0.533 0.000 0.019 | -0.143
## 7 | 3.822 | -1.963 0.001 0.264 | 0.468 0.000 0.015 | -0.200
## 8 | 3.843 | -1.960 0.001 0.260 | 0.510 0.000 0.018 | -0.148
## 9 | 3.843 | -1.986 0.001 0.267 | 0.499 0.000 0.017 | -0.136
## 10 | 3.868 | -1.923 0.001 0.247 | 0.509 0.000 0.017 | -0.165
## ctr cos2
## 1 0.000 0.009 |
## 2 0.000 0.009 |
## 3 0.000 0.013 |
## 4 0.000 0.016 |
## 5 0.000 0.001 |
## 6 0.000 0.001 |
## 7 0.000 0.003 |
## 8 0.000 0.001 |
## 9 0.000 0.001 |
## 10 0.000 0.002 |
##
## Continuous variables (the 10 first)
## Dim.1 ctr cos2 Dim.2 ctr cos2 Dim.3 ctr
## num 1 | 0.019 0.006 0.000 | -0.006 0.001 0.000 | 0.011 0.006
## num 2 | -0.111 0.220 0.012 | -0.047 0.083 0.002 | -0.248 2.825
## num 3 | 0.097 0.169 0.009 | 0.386 5.624 0.149 | 0.454 9.479
## num 4 | 0.086 0.132 0.007 | 0.241 2.195 0.058 | -0.091 0.381
## num 5 | 0.803 11.599 0.644 | 0.110 0.458 0.012 | -0.023 0.024
## num 6 | 0.916 15.114 0.839 | 0.135 0.686 0.018 | -0.098 0.443
## num 7 | -0.797 11.437 0.635 | -0.216 1.760 0.047 | 0.171 1.350
## num 8 | -0.309 1.722 0.096 | 0.582 12.765 0.339 | -0.107 0.526
## num 9 | 0.052 0.048 0.003 | 0.444 7.406 0.197 | 0.435 8.700
## num 10 | 0.134 0.321 0.018 | 0.259 2.529 0.067 | 0.392 7.062
## cos2
## num 1 0.000 |
## num 2 0.061 |
## num 3 0.206 |
## num 4 0.008 |
## num 5 0.001 |
## num 6 0.010 |
## num 7 0.029 |
## num 8 0.011 |
## num 9 0.189 |
## num 10 0.153 |
##
## Categories (the 10 first)
## Dim.1 ctr cos2 v.test Dim.2 ctr cos2
## 0 | 0.700 1.114 0.498 142.587 | -0.536 2.856 0.292
## 1 | -1.639 2.608 0.498 -142.587 | 1.256 6.688 0.292
## 0 | 1.557 0.002 0.001 3.100 | 1.546 0.008 0.001
## 1 | 0.000 0.000 0.001 -3.100 | 0.000 0.000 0.001
## 0 | -1.409 1.230 0.323 -91.123 | -0.217 0.127 0.008
## 1 | 0.333 0.290 0.323 91.123 | 0.051 0.030 0.008
## 0 | -2.073 7.333 0.963 -290.827 | -0.241 0.433 0.013
## 1 | 2.303 8.149 0.963 290.827 | 0.268 0.482 0.013
## 0 | 1.260 0.077 0.022 20.651 | -1.558 0.514 0.034
## 1 | -0.019 0.001 0.022 -20.651 | 0.024 0.008 0.034
## v.test Dim.3 ctr cos2 v.test
## 0 -157.921 | 0.227 0.762 0.052 73.765 |
## 1 157.921 | -0.530 1.784 0.052 -73.765 |
## 0 4.450 | -1.776 0.015 0.001 -5.653 |
## 1 -4.450 | 0.000 0.000 0.001 5.653 |
## 0 -20.247 | -0.625 1.579 0.064 -64.592 |
## 1 20.247 | 0.147 0.373 0.064 64.592 |
## 0 -48.905 | 0.159 0.283 0.006 35.732 |
## 1 48.905 | -0.177 0.314 0.006 -35.732 |
## 0 -36.916 | -1.453 0.668 0.030 -38.060 |
## 1 36.916 | 0.022 0.010 0.030 38.060 |
Dim = coordenate for each dimension.
ctr = contribution for the construction of that dimension.
cos = quality of representation. If it is close to 1 it means that it is well projected on the dimension.
v.test = significant test. If it is smaller than -2 or bigger than 2 it means that the observation’s coordenate is significant smaller or bigger than 0.
## [1] "num 1 = LaboratorioPassante150meshpv"
## [2] "num 2 = MoinhoAlimentacaoTaxaMineriomv"
## [3] "num 3 = MoinhoAlimentacaoTaxaMineriopv"
## [4] "num 4 = MoinhoAlimentacaoVazaoAguapv"
## [5] "num 5 = MoinhoCaixaDescargaCaixaABombaRotacaomv"
## [6] "num 6 = MoinhoCaixaDescargaCaixaANivelpv"
## [7] "num 7 = MoinhoCaixaDescargaCaixaRNivelpv"
## [8] "num 8 = MoinhoCaixaDescargaVazaoAguamv"
## [9] "num 9 = MoinhoCaixaDescargaVazaoAguapv"
## [10] "num 10 = MoinhoHidrociclonesDensidadepv"
## [11] "num 11 = MoinhoHidrociclonesPressaopv"
## [12] "num 12 = MoinhoMotorMoinhoPotenciapv"
## [13] "num 13 = PSTPassante150meshMedianapv"
## [14] "ord 1 = LaboratorioPassante150meshhmi"
## [15] "ord 2 = MoinhoAlimentacaoTaxaMineriopermissaohmi"
## [16] "ord 3 = MoinhoBombaDePocoLigada"
## [17] "ord 4 = MoinhoCaixaDescargaCaixaABombaLigado"
## [18] "ord 5 = MoinhoCaixaDescargaCaixaANivelmodo"
## [19] "ord 6 = MoinhoCaixaDescargaCaixaRBombaLigado"
## [20] "ord 7 = MoinhoCaixaDescargaCaixaRNivelmodo"
## [21] "ord 8 = MoinhoHidrociclonesDensidadeLido"
## [22] "ord 9 = MoinhoHidrociclonesDensidadehmi"
## [23] "ord 10 = MoinhoKnelsonBP04ALigado"
## [24] "ord 11 = MoinhoKnelsonBP04RLigado"
## [25] "ord 12 = OptProcessPulsoLido"
##
## Call:
## lm(formula = bcPower(`num 12`, p1$roundlam) ~ . - `ord 2` - `ord 12` -
## `ord 9` - `ord 6` - `num 1` - `num 13` - `ord 3` + LagBC,
## data = finalData[, -c(1, 2)])
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.713e+19 -1.085e+18 4.346e+16 9.625e+17 8.931e+19
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.189e+20 5.968e+17 -199.24 <2e-16 ***
## `num 2` -3.569e+17 3.310e+15 -107.84 <2e-16 ***
## `num 3` 8.146e+16 4.792e+14 170.02 <2e-16 ***
## `num 4` 1.670e+17 1.183e+15 141.25 <2e-16 ***
## `num 5` -7.374e+17 2.065e+15 -357.10 <2e-16 ***
## `num 6` 6.693e+16 1.119e+15 59.81 <2e-16 ***
## `num 7` 6.275e+16 6.175e+14 101.63 <2e-16 ***
## `num 8` -3.344e+16 3.509e+14 -95.31 <2e-16 ***
## `num 9` 3.497e+16 3.467e+14 100.86 <2e-16 ***
## `num 10` 1.600e+20 3.917e+17 408.45 <2e-16 ***
## `num 11` 9.476e+18 1.229e+17 77.13 <2e-16 ***
## `ord 1` 1 -1.642e+18 2.410e+16 -68.12 <2e-16 ***
## `ord 4` 1 4.345e+18 5.974e+16 72.72 <2e-16 ***
## `ord 5` 1 -9.459e+18 7.460e+16 -126.79 <2e-16 ***
## `ord 7` 1 -1.827e+18 3.362e+16 -54.35 <2e-16 ***
## `ord 8` 1 1.980e+18 2.508e+16 78.95 <2e-16 ***
## `ord 10` 1 1.421e+18 4.637e+16 30.64 <2e-16 ***
## `ord 11` 1 5.068e+18 5.193e+16 97.60 <2e-16 ***
## LagBC 9.580e-01 9.198e-04 1041.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.628e+18 on 98363 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.9463, Adjusted R-squared: 0.9463
## F-statistic: 9.627e+04 on 18 and 98363 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = `num 12` ~ . - `ord 2` - `ord 12` - `ord 9` - `ord 6` -
## `num 1` - `num 13` - `ord 3` + Lag, data = finalData[, -c(1,
## 2)])
##
## Residuals:
## Min 1Q Median 3Q Max
## -1135.15 -2.85 0.16 3.08 1051.83
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.573e+03 3.560e+00 -441.77 <2e-16 ***
## `num 2` -3.886e+00 1.974e-02 -196.86 <2e-16 ***
## `num 3` 6.667e-01 2.858e-03 233.29 <2e-16 ***
## `num 4` 4.806e-01 7.054e-03 68.13 <2e-16 ***
## `num 5` -2.151e+00 1.232e-02 -174.60 <2e-16 ***
## `num 6` 3.298e-01 6.675e-03 49.40 <2e-16 ***
## `num 7` 3.442e-01 3.683e-03 93.47 <2e-16 ***
## `num 8` -2.322e-01 2.093e-03 -110.95 <2e-16 ***
## `num 9` 4.983e-01 2.068e-03 240.97 <2e-16 ***
## `num 10` 1.734e+03 2.336e+00 741.95 <2e-16 ***
## `num 11` 1.569e+02 7.328e-01 214.09 <2e-16 ***
## `ord 1` 1 2.504e+00 1.438e-01 17.42 <2e-16 ***
## `ord 4` 1 9.078e+00 3.564e-01 25.48 <2e-16 ***
## `ord 5` 1 -3.307e+01 4.450e-01 -74.32 <2e-16 ***
## `ord 7` 1 1.259e+01 2.005e-01 62.79 <2e-16 ***
## `ord 8` 1 2.032e+00 1.496e-01 13.58 <2e-16 ***
## `ord 10` 1 3.543e+00 2.766e-01 12.81 <2e-16 ***
## `ord 11` 1 1.984e+01 3.097e-01 64.06 <2e-16 ***
## Lag 9.769e-01 6.873e-04 1421.38 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.67 on 98363 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.9729, Adjusted R-squared: 0.9729
## F-statistic: 1.962e+05 on 18 and 98363 DF, p-value: < 2.2e-16
## Granger causality test
##
## Model 1: num 12 ~ Lags(num 12, 1:1) + Lags(num 3, 1:1)
## Model 2: num 12 ~ Lags(num 12, 1:1)
## Res.Df Df F Pr(>F)
## 1 98379
## 2 98380 -1 36.274 1.72e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Granger causality test
##
## Model 1: num 12 ~ Lags(num 12, 1:1) + Lags(num 10, 1:1)
## Model 2: num 12 ~ Lags(num 12, 1:1)
## Res.Df Df F Pr(>F)
## 1 98379
## 2 98380 -1 56.815 4.83e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1