1. Missing Values

Original data.

Removing the missing values.

2. Descriptive Statistics

With missing values.

After removing the missing values.

3. Factorial Analysis of Mixed Data

## 
## Call:
## FAMD(base = finalData[, -c(1, 2)], ncp = 25, graph = FALSE) 
## 
## 
## Eigenvalues
##                        Dim.1   Dim.2   Dim.3   Dim.4   Dim.5   Dim.6
## Variance               5.553   2.656   2.172   1.868   1.351   1.165
## % of var.             22.211  10.624   8.689   7.471   5.404   4.658
## Cumulative % of var.  22.211  32.835  41.525  48.996  54.400  59.058
##                        Dim.7   Dim.8   Dim.9  Dim.10  Dim.11  Dim.12
## Variance               1.079   1.001   1.000   0.998   0.927   0.862
## % of var.              4.315   4.004   4.001   3.990   3.708   3.449
## Cumulative % of var.  63.373  67.378  71.379  75.369  79.077  82.526
##                       Dim.13  Dim.14  Dim.15  Dim.16  Dim.17  Dim.18
## Variance               0.795   0.696   0.625   0.433   0.416   0.396
## % of var.              3.181   2.785   2.499   1.732   1.662   1.583
## Cumulative % of var.  85.707  88.492  90.991  92.723  94.385  95.968
##                       Dim.19  Dim.20  Dim.21  Dim.22  Dim.23  Dim.24
## Variance               0.311   0.273   0.213   0.143   0.062   0.006
## % of var.              1.243   1.093   0.853   0.572   0.247   0.022
## Cumulative % of var.  97.211  98.304  99.158  99.730  99.976  99.999
##                       Dim.25
## Variance               0.000
## % of var.              0.001
## Cumulative % of var. 100.000
## 
## Individuals (the 10 first)
##            Dist    Dim.1    ctr   cos2    Dim.2    ctr   cos2    Dim.3
## 1      |  3.811 | -1.463  0.000  0.147 | -0.307  0.000  0.007 |  0.369
## 2      |  3.825 | -1.454  0.000  0.144 | -0.310  0.000  0.007 |  0.371
## 3      |  3.801 | -1.499  0.000  0.155 | -0.292  0.000  0.006 |  0.435
## 4      |  3.835 | -1.600  0.000  0.174 | -0.300  0.000  0.006 |  0.480
## 5      |  3.840 | -2.025  0.001  0.278 |  0.522  0.000  0.019 | -0.094
## 6      |  3.862 | -1.916  0.001  0.246 |  0.533  0.000  0.019 | -0.143
## 7      |  3.822 | -1.963  0.001  0.264 |  0.468  0.000  0.015 | -0.200
## 8      |  3.843 | -1.960  0.001  0.260 |  0.510  0.000  0.018 | -0.148
## 9      |  3.843 | -1.986  0.001  0.267 |  0.499  0.000  0.017 | -0.136
## 10     |  3.868 | -1.923  0.001  0.247 |  0.509  0.000  0.017 | -0.165
##           ctr   cos2  
## 1       0.000  0.009 |
## 2       0.000  0.009 |
## 3       0.000  0.013 |
## 4       0.000  0.016 |
## 5       0.000  0.001 |
## 6       0.000  0.001 |
## 7       0.000  0.003 |
## 8       0.000  0.001 |
## 9       0.000  0.001 |
## 10      0.000  0.002 |
## 
## Continuous variables (the 10 first)
##           Dim.1    ctr   cos2    Dim.2    ctr   cos2    Dim.3    ctr
## num 1  |  0.019  0.006  0.000 | -0.006  0.001  0.000 |  0.011  0.006
## num 2  | -0.111  0.220  0.012 | -0.047  0.083  0.002 | -0.248  2.825
## num 3  |  0.097  0.169  0.009 |  0.386  5.624  0.149 |  0.454  9.479
## num 4  |  0.086  0.132  0.007 |  0.241  2.195  0.058 | -0.091  0.381
## num 5  |  0.803 11.599  0.644 |  0.110  0.458  0.012 | -0.023  0.024
## num 6  |  0.916 15.114  0.839 |  0.135  0.686  0.018 | -0.098  0.443
## num 7  | -0.797 11.437  0.635 | -0.216  1.760  0.047 |  0.171  1.350
## num 8  | -0.309  1.722  0.096 |  0.582 12.765  0.339 | -0.107  0.526
## num 9  |  0.052  0.048  0.003 |  0.444  7.406  0.197 |  0.435  8.700
## num 10 |  0.134  0.321  0.018 |  0.259  2.529  0.067 |  0.392  7.062
##          cos2  
## num 1   0.000 |
## num 2   0.061 |
## num 3   0.206 |
## num 4   0.008 |
## num 5   0.001 |
## num 6   0.010 |
## num 7   0.029 |
## num 8   0.011 |
## num 9   0.189 |
## num 10  0.153 |
## 
## Categories (the 10 first)
##             Dim.1      ctr     cos2   v.test      Dim.2      ctr     cos2
##  0     |    0.700    1.114    0.498  142.587 |   -0.536    2.856    0.292
##  1     |   -1.639    2.608    0.498 -142.587 |    1.256    6.688    0.292
##  0     |    1.557    0.002    0.001    3.100 |    1.546    0.008    0.001
##  1     |    0.000    0.000    0.001   -3.100 |    0.000    0.000    0.001
##  0     |   -1.409    1.230    0.323  -91.123 |   -0.217    0.127    0.008
##  1     |    0.333    0.290    0.323   91.123 |    0.051    0.030    0.008
##  0     |   -2.073    7.333    0.963 -290.827 |   -0.241    0.433    0.013
##  1     |    2.303    8.149    0.963  290.827 |    0.268    0.482    0.013
##  0     |    1.260    0.077    0.022   20.651 |   -1.558    0.514    0.034
##  1     |   -0.019    0.001    0.022  -20.651 |    0.024    0.008    0.034
##          v.test      Dim.3      ctr     cos2   v.test  
##  0     -157.921 |    0.227    0.762    0.052   73.765 |
##  1      157.921 |   -0.530    1.784    0.052  -73.765 |
##  0        4.450 |   -1.776    0.015    0.001   -5.653 |
##  1       -4.450 |    0.000    0.000    0.001    5.653 |
##  0      -20.247 |   -0.625    1.579    0.064  -64.592 |
##  1       20.247 |    0.147    0.373    0.064   64.592 |
##  0      -48.905 |    0.159    0.283    0.006   35.732 |
##  1       48.905 |   -0.177    0.314    0.006  -35.732 |
##  0      -36.916 |   -1.453    0.668    0.030  -38.060 |
##  1       36.916 |    0.022    0.010    0.030   38.060 |

Dim = coordenate for each dimension.

ctr = contribution for the construction of that dimension.

cos = quality of representation. If it is close to 1 it means that it is well projected on the dimension.

v.test = significant test. If it is smaller than -2 or bigger than 2 it means that the observation’s coordenate is significant smaller or bigger than 0.

4. Dicionário de Variáveis

##  [1] "num 1 = LaboratorioPassante150meshpv"            
##  [2] "num 2 = MoinhoAlimentacaoTaxaMineriomv"          
##  [3] "num 3 = MoinhoAlimentacaoTaxaMineriopv"          
##  [4] "num 4 = MoinhoAlimentacaoVazaoAguapv"            
##  [5] "num 5 = MoinhoCaixaDescargaCaixaABombaRotacaomv" 
##  [6] "num 6 = MoinhoCaixaDescargaCaixaANivelpv"        
##  [7] "num 7 = MoinhoCaixaDescargaCaixaRNivelpv"        
##  [8] "num 8 = MoinhoCaixaDescargaVazaoAguamv"          
##  [9] "num 9 = MoinhoCaixaDescargaVazaoAguapv"          
## [10] "num 10 = MoinhoHidrociclonesDensidadepv"         
## [11] "num 11 = MoinhoHidrociclonesPressaopv"           
## [12] "num 12 = MoinhoMotorMoinhoPotenciapv"            
## [13] "num 13 = PSTPassante150meshMedianapv"            
## [14] "ord 1 = LaboratorioPassante150meshhmi"           
## [15] "ord 2 = MoinhoAlimentacaoTaxaMineriopermissaohmi"
## [16] "ord 3 = MoinhoBombaDePocoLigada"                 
## [17] "ord 4 = MoinhoCaixaDescargaCaixaABombaLigado"    
## [18] "ord 5 = MoinhoCaixaDescargaCaixaANivelmodo"      
## [19] "ord 6 = MoinhoCaixaDescargaCaixaRBombaLigado"    
## [20] "ord 7 = MoinhoCaixaDescargaCaixaRNivelmodo"      
## [21] "ord 8 = MoinhoHidrociclonesDensidadeLido"        
## [22] "ord 9 = MoinhoHidrociclonesDensidadehmi"         
## [23] "ord 10 = MoinhoKnelsonBP04ALigado"               
## [24] "ord 11 = MoinhoKnelsonBP04RLigado"               
## [25] "ord 12 = OptProcessPulsoLido"

5. Regressão

## 
## Call:
## lm(formula = bcPower(`num 12`, p1$roundlam) ~ . - `ord 2` - `ord 12` - 
##     `ord 9` - `ord 6` - `num 1` - `num 13` - `ord 3` + LagBC, 
##     data = finalData[, -c(1, 2)])
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -9.713e+19 -1.085e+18  4.346e+16  9.625e+17  8.931e+19 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.189e+20  5.968e+17 -199.24   <2e-16 ***
## `num 2`     -3.569e+17  3.310e+15 -107.84   <2e-16 ***
## `num 3`      8.146e+16  4.792e+14  170.02   <2e-16 ***
## `num 4`      1.670e+17  1.183e+15  141.25   <2e-16 ***
## `num 5`     -7.374e+17  2.065e+15 -357.10   <2e-16 ***
## `num 6`      6.693e+16  1.119e+15   59.81   <2e-16 ***
## `num 7`      6.275e+16  6.175e+14  101.63   <2e-16 ***
## `num 8`     -3.344e+16  3.509e+14  -95.31   <2e-16 ***
## `num 9`      3.497e+16  3.467e+14  100.86   <2e-16 ***
## `num 10`     1.600e+20  3.917e+17  408.45   <2e-16 ***
## `num 11`     9.476e+18  1.229e+17   77.13   <2e-16 ***
## `ord 1` 1   -1.642e+18  2.410e+16  -68.12   <2e-16 ***
## `ord 4` 1    4.345e+18  5.974e+16   72.72   <2e-16 ***
## `ord 5` 1   -9.459e+18  7.460e+16 -126.79   <2e-16 ***
## `ord 7` 1   -1.827e+18  3.362e+16  -54.35   <2e-16 ***
## `ord 8` 1    1.980e+18  2.508e+16   78.95   <2e-16 ***
## `ord 10` 1   1.421e+18  4.637e+16   30.64   <2e-16 ***
## `ord 11` 1   5.068e+18  5.193e+16   97.60   <2e-16 ***
## LagBC        9.580e-01  9.198e-04 1041.49   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.628e+18 on 98363 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.9463, Adjusted R-squared:  0.9463 
## F-statistic: 9.627e+04 on 18 and 98363 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = `num 12` ~ . - `ord 2` - `ord 12` - `ord 9` - `ord 6` - 
##     `num 1` - `num 13` - `ord 3` + Lag, data = finalData[, -c(1, 
##     2)])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1135.15    -2.85     0.16     3.08  1051.83 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.573e+03  3.560e+00 -441.77   <2e-16 ***
## `num 2`     -3.886e+00  1.974e-02 -196.86   <2e-16 ***
## `num 3`      6.667e-01  2.858e-03  233.29   <2e-16 ***
## `num 4`      4.806e-01  7.054e-03   68.13   <2e-16 ***
## `num 5`     -2.151e+00  1.232e-02 -174.60   <2e-16 ***
## `num 6`      3.298e-01  6.675e-03   49.40   <2e-16 ***
## `num 7`      3.442e-01  3.683e-03   93.47   <2e-16 ***
## `num 8`     -2.322e-01  2.093e-03 -110.95   <2e-16 ***
## `num 9`      4.983e-01  2.068e-03  240.97   <2e-16 ***
## `num 10`     1.734e+03  2.336e+00  741.95   <2e-16 ***
## `num 11`     1.569e+02  7.328e-01  214.09   <2e-16 ***
## `ord 1` 1    2.504e+00  1.438e-01   17.42   <2e-16 ***
## `ord 4` 1    9.078e+00  3.564e-01   25.48   <2e-16 ***
## `ord 5` 1   -3.307e+01  4.450e-01  -74.32   <2e-16 ***
## `ord 7` 1    1.259e+01  2.005e-01   62.79   <2e-16 ***
## `ord 8` 1    2.032e+00  1.496e-01   13.58   <2e-16 ***
## `ord 10` 1   3.543e+00  2.766e-01   12.81   <2e-16 ***
## `ord 11` 1   1.984e+01  3.097e-01   64.06   <2e-16 ***
## Lag          9.769e-01  6.873e-04 1421.38   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.67 on 98363 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.9729, Adjusted R-squared:  0.9729 
## F-statistic: 1.962e+05 on 18 and 98363 DF,  p-value: < 2.2e-16

6. Causalidade

## Granger causality test
## 
## Model 1: num 12 ~ Lags(num 12, 1:1) + Lags(num 3, 1:1)
## Model 2: num 12 ~ Lags(num 12, 1:1)
##   Res.Df Df      F   Pr(>F)    
## 1  98379                       
## 2  98380 -1 36.274 1.72e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Granger causality test
## 
## Model 1: num 12 ~ Lags(num 12, 1:1) + Lags(num 10, 1:1)
## Model 2: num 12 ~ Lags(num 12, 1:1)
##   Res.Df Df      F   Pr(>F)    
## 1  98379                       
## 2  98380 -1 56.815 4.83e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1