Let’s read in our dataset.
library(tidyverse); library(haven)
productivity <- read_dta("~/Dropbox (UNC Charlotte)/R Bootcamp/Data/productivity.dta")
library(scatterD3)
scatterD3(productivity$water,productivity$gsp)
Now let’s color by year.
library(scatterD3)
scatterD3(productivity$water, productivity$gsp, col_var = as.integer(productivity$year))
library(scatterD3)
scatterD3(productivity$water, productivity$gsp, col_var = as.factor(productivity$state))
library(scatterD3)
scatterD3(productivity$water, productivity$gsp, col_var = as.factor(productivity$region))
library(pairsD3)
pairsD3(productivity[,5:10],group=productivity$region)
Highcharter is a library of terrific interactive graphs.
For example, we can create an interactive bar chart with one line of code!
library(highcharter)
hchart(productivity$region, type = "column", colorByPoint = TRUE, name = "Region")
We can also create heatmaps:
library(d3heatmap)
cor(productivity[,5:10])
## hwy water other private gsp emp
## hwy 1.0000000 0.9371995 0.9392390 0.9532711 0.9659657 0.9493791
## water 0.9371995 1.0000000 0.9655808 0.9160438 0.9730842 0.9718385
## other 0.9392390 0.9655808 1.0000000 0.9132932 0.9667210 0.9692303
## private 0.9532711 0.9160438 0.9132932 1.0000000 0.9607855 0.9261355
## gsp 0.9659657 0.9730842 0.9667210 0.9607855 1.0000000 0.9885889
## emp 0.9493791 0.9718385 0.9692303 0.9261355 0.9885889 1.0000000
d3heatmap(productivity[,5:10])
Or interactive time series…
library(dygraphs)