Linear Discriminant Analysis

Classification models can be an invaluable tool to a researcher. Utilizing these methods allow a research to focus on qualitative techniques to answer questions other statistical techniques cannot. In this tutorial we are going to look at the use of linear discriminant analysis on our Student Performance dataset.

The dataset is from the UCI Machine Learning Repository and can be found by clicking the following link: https://archive.ics.uci.edu/ml/datasets/Student+Performance

Step 1: Load Libraries

In this step we need to get a few packages for our analysis. We can do this by using the following code. The dependencies = TRUE ensures we install all of the necessary packages the other packages depend on.

# install.packages(c("shiny","ggvis","reshape2","dplyr","gam","tree","randomForest"),dependencies = TRUE)

Ensure you have the MASS package loaded as this is necessary to perform linear discriminant analysis in R.

library(MASS)
library(splines)
library(gam)

Step 2: Import the data into R

We need to import our data into R. We can do this in several ways. In this tutorial we will be doing this via the read.csv() function that is available in base R. The header = T allows us to keep our headers from our excel sheet, and our sep = “,” tells R that our data is separated by commas. We can utilize tab / or semicolon ; as well in our ‘sep =’ argument. We are then renaming our dataset to ‘Student_Performance_Ben_Gonzalez’ which creates an object in R we can use throughout our analysis. The attach() function then ensures we have attached our dataset so we can analyze it.

##Student Performance Dataset-Ben Gonzalez ##########################

Student_Performance_Ben_Gonzalez <-read.csv("~/Datasets/Student_Performance_Ben_Gonzalez.csv",header = T, sep = ",")
attach(Student_Performance_Ben_Gonzalez)

Step 3: Look at variable names

This will give us an overview of what variables are in our dataset. I recommend doing this to help better understand our dataset.

names(Student_Performance_Ben_Gonzalez)
##  [1] "school"     "sex"        "age"        "address"    "famsize"   
##  [6] "Pstatus"    "Medu"       "Fedu"       "Mjob"       "Fjob"      
## [11] "reason"     "guardian"   "traveltime" "studytime"  "failures"  
## [16] "schoolsup"  "famsup"     "paid"       "activities" "nursery"   
## [21] "higher"     "internet"   "romantic"   "famrel"     "freetime"  
## [26] "goout"      "Dalc"       "Walc"       "health"     "absences"  
## [31] "G1"         "G2"         "G3"

Step 4: Look at a summary of our data

The summary overview gives us a solid understanding of our data, it also may highlight extreme values for us as well.

summary(Student_Performance_Ben_Gonzalez)
##  school   sex          age       address famsize   Pstatus      Medu      
##  GP:349   F:208   Min.   :15.0   R: 88   GT3:281   A: 41   Min.   :0.000  
##  MS: 46   M:187   1st Qu.:16.0   U:307   LE3:114   T:354   1st Qu.:2.000  
##                   Median :17.0                             Median :3.000  
##                   Mean   :16.7                             Mean   :2.749  
##                   3rd Qu.:18.0                             3rd Qu.:4.000  
##                   Max.   :22.0                             Max.   :4.000  
##       Fedu             Mjob           Fjob            reason   
##  Min.   :0.000   at_home : 59   at_home : 20   course    :145  
##  1st Qu.:2.000   health  : 34   health  : 18   home      :109  
##  Median :2.000   other   :141   other   :217   other     : 36  
##  Mean   :2.522   services:103   services:111   reputation:105  
##  3rd Qu.:3.000   teacher : 58   teacher : 29                   
##  Max.   :4.000                                                 
##    guardian     traveltime      studytime        failures      schoolsup
##  father: 90   Min.   :1.000   Min.   :1.000   Min.   :0.0000   no :344  
##  mother:273   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:0.0000   yes: 51  
##  other : 32   Median :1.000   Median :2.000   Median :0.0000            
##               Mean   :1.448   Mean   :2.035   Mean   :0.3342            
##               3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:0.0000            
##               Max.   :4.000   Max.   :4.000   Max.   :3.0000            
##  famsup     paid     activities nursery   higher    internet  romantic 
##  no :153   no :214   no :194    no : 81   no : 20   no : 66   no :263  
##  yes:242   yes:181   yes:201    yes:314   yes:375   yes:329   yes:132  
##                                                                        
##                                                                        
##                                                                        
##                                                                        
##      famrel         freetime         goout            Dalc      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:2.000   1st Qu.:1.000  
##  Median :4.000   Median :3.000   Median :3.000   Median :1.000  
##  Mean   :3.944   Mean   :3.235   Mean   :3.109   Mean   :1.481  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:2.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       Walc           health         absences            G1       
##  Min.   :1.000   Min.   :1.000   Min.   : 0.000   Min.   : 3.00  
##  1st Qu.:1.000   1st Qu.:3.000   1st Qu.: 0.000   1st Qu.: 8.00  
##  Median :2.000   Median :4.000   Median : 4.000   Median :11.00  
##  Mean   :2.291   Mean   :3.554   Mean   : 5.709   Mean   :10.91  
##  3rd Qu.:3.000   3rd Qu.:5.000   3rd Qu.: 8.000   3rd Qu.:13.00  
##  Max.   :5.000   Max.   :5.000   Max.   :75.000   Max.   :19.00  
##        G2              G3       
##  Min.   : 0.00   Min.   : 0.00  
##  1st Qu.: 9.00   1st Qu.: 8.00  
##  Median :11.00   Median :11.00  
##  Mean   :10.71   Mean   :10.42  
##  3rd Qu.:13.00   3rd Qu.:14.00  
##  Max.   :19.00   Max.   :20.00

Step 5: Look at the structure of our data

This step allows us to look at the structure of our data and which variables are integers or factors. This will help us in determining what statistical techniques we can utilize on our data. In this tutorial we will be focusing on ‘classification’ techniques.

str(Student_Performance_Ben_Gonzalez)
## 'data.frame':    395 obs. of  33 variables:
##  $ school    : Factor w/ 2 levels "GP","MS": 1 1 1 1 1 1 1 1 1 1 ...
##  $ sex       : Factor w/ 2 levels "F","M": 1 1 1 1 1 2 2 1 2 2 ...
##  $ age       : int  18 17 15 15 16 16 16 17 15 15 ...
##  $ address   : Factor w/ 2 levels "R","U": 2 2 2 2 2 2 2 2 2 2 ...
##  $ famsize   : Factor w/ 2 levels "GT3","LE3": 1 1 2 1 1 2 2 1 2 1 ...
##  $ Pstatus   : Factor w/ 2 levels "A","T": 1 2 2 2 2 2 2 1 1 2 ...
##  $ Medu      : int  4 1 1 4 3 4 2 4 3 3 ...
##  $ Fedu      : int  4 1 1 2 3 3 2 4 2 4 ...
##  $ Mjob      : Factor w/ 5 levels "at_home","health",..: 1 1 1 2 3 4 3 3 4 3 ...
##  $ Fjob      : Factor w/ 5 levels "at_home","health",..: 5 3 3 4 3 3 3 5 3 3 ...
##  $ reason    : Factor w/ 4 levels "course","home",..: 1 1 3 2 2 4 2 2 2 2 ...
##  $ guardian  : Factor w/ 3 levels "father","mother",..: 2 1 2 2 1 2 2 2 2 2 ...
##  $ traveltime: int  2 1 1 1 1 1 1 2 1 1 ...
##  $ studytime : int  2 2 2 3 2 2 2 2 2 2 ...
##  $ failures  : int  0 0 3 0 0 0 0 0 0 0 ...
##  $ schoolsup : Factor w/ 2 levels "no","yes": 2 1 2 1 1 1 1 2 1 1 ...
##  $ famsup    : Factor w/ 2 levels "no","yes": 1 2 1 2 2 2 1 2 2 2 ...
##  $ paid      : Factor w/ 2 levels "no","yes": 1 1 2 2 2 2 1 1 2 2 ...
##  $ activities: Factor w/ 2 levels "no","yes": 1 1 1 2 1 2 1 1 1 2 ...
##  $ nursery   : Factor w/ 2 levels "no","yes": 2 1 2 2 2 2 2 2 2 2 ...
##  $ higher    : Factor w/ 2 levels "no","yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ internet  : Factor w/ 2 levels "no","yes": 1 2 2 2 1 2 2 1 2 2 ...
##  $ romantic  : Factor w/ 2 levels "no","yes": 1 1 1 2 1 1 1 1 1 1 ...
##  $ famrel    : int  4 5 4 3 4 5 4 4 4 5 ...
##  $ freetime  : int  3 3 3 2 3 4 4 1 2 5 ...
##  $ goout     : int  4 3 2 2 2 2 4 4 2 1 ...
##  $ Dalc      : int  1 1 2 1 1 1 1 1 1 1 ...
##  $ Walc      : int  1 1 3 1 2 2 1 1 1 1 ...
##  $ health    : int  3 3 3 5 5 5 3 1 1 5 ...
##  $ absences  : int  6 4 10 2 4 10 0 6 0 0 ...
##  $ G1        : int  5 5 7 15 6 15 12 6 16 14 ...
##  $ G2        : int  6 5 8 14 10 15 12 5 18 15 ...
##  $ G3        : int  6 6 10 15 10 15 11 6 19 15 ...
train=(G1<10)
g1.10=Student_Performance_Ben_Gonzalez[!train,]
dim(g1.10)
## [1] 253  33
gradeone.10=schoolsup[!train]

This shows us we have 253 observations for G1 that are less than 10 and 33 that are higher than 10.

Step 6: Linear Discriminant Analysis

Here we are going to utilize a classification technique called linear discriminant analysis. This is similar to using both the lm() and ** glm()** functions. The absence of the family option is the notable difference from the glm() function.

## Schoolsup LDA

lda.fit=lda(schoolsup~.,data = Student_Performance_Ben_Gonzalez,subset = train)
lda.fit1=lda(schoolsup~G1,data = Student_Performance_Ben_Gonzalez,subset = train)
lda.fit1
## Call:
## lda(schoolsup ~ G1, data = Student_Performance_Ben_Gonzalez, 
##     subset = train)
## 
## Prior probabilities of groups:
##        no       yes 
## 0.8028169 0.1971831 
## 
## Group means:
##           G1
## no  7.429825
## yes 7.321429
## 
## Coefficients of linear discriminants:
##          LD1
## G1 0.8012909

Step 7: Let’s plot our data

plot(lda.fit1)

Step 8: Let’s predict our data

Here we will have 3 elements returned to us.

lda.pred1=predict(lda.fit1,g1.10)
lda.class1=lda.pred1$class
table(lda.class1, gradeone.10)
##           gradeone.10
## lda.class1  no yes
##        no  230  23
##        yes   0   0
mean(lda.class1== gradeone.10)
## [1] 0.9090909
sum(lda.pred1$posterior [ ,1] >=.5)
## [1] 253
sum(lda.pred1$posterior [ ,1] <.5)
## [1] 0
lda.pred1$posterior[1:10, 1]
##         4         6         7         9        10        11        12 
## 0.8737611 0.8737611 0.8488794 0.8812404 0.8658826 0.8301434 0.8301434 
##        13        14        15 
## 0.8658826 0.8301434 0.8658826
lda.class1[1:65]
##  [1] no no no no no no no no no no no no no no no no no no no no no no no
## [24] no no no no no no no no no no no no no no no no no no no no no no no
## [47] no no no no no no no no no no no no no no no no no no no
## Levels: no yes