This file holds the data fiddlings for the model built by Nic and Misty to explore the effects of forced renesting on the evolution of nest timing. This is based on a chick survival (conversion rate) default of 0.25.
The parent file is: RIIImerged.csv
all3<-read.csv("/users/mcpheem/Google Drive/Research _ Active/Cranes _ Google/Crane crew research/FRN simulation _ MEM/datafilesRIII/RIIImerged.csv",header=T)
names(all3)
## [1] "Run" "Year"
## [3] "Population.size" "Proportion.late.nesters"
## [5] "Proportion.wild.born" "variable.input"
## [7] "File.name"
levels(all3$File.name)
## [1] "CP_000" "CP_025" "CP_075"
## [4] "CP_100" "default.w.CR0.25" "EN_025"
## [7] "EN_075" "NP_025" "NP_075"
## [10] "RC_00" "RC_10" "RC_15"
## [13] "RNP_025" "RNP_075"
levels(all3$File.name)
## [1] "CP_000" "CP_025" "CP_075"
## [4] "CP_100" "default.w.CR0.25" "EN_025"
## [7] "EN_075" "NP_025" "NP_075"
## [10] "RC_00" "RC_10" "RC_15"
## [13] "RNP_025" "RNP_075"
max(all3$Year)
## [1] 2115
checking to make sure that each of the input files are the right size (i.e., no duplicates)
summary(all3$File.name)
Building exploratory plots that show N, prop late nesters, and prop wild born in year 2115 across the different files.
I changed the order of the x-axis so that the labels made more sense.
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
These graphs included all populations, even those that were extremely small. The following code allows us to look at parameters in light of pops that didn’t drop below 100. For example, CP_000 had a high prop of late nesters but when we used only pops >100 it fell out.
Here we create vectors for our modifiable parameters and new data frames (the original data frame with all3 data gave a plot for RNP which the 0.5 had all3 of the other values combined (e.g., CP = 0, 0.25, 0.5…) which makes the middle box difficult to interpret.)
This code is based on the data frame successful and the graphs use 2115 data only
extract_cp <- function(filename) {
m <- regexec("CP_([0-9]+)", as.character(filename));
if (m[[1]][1] >= 0) {
as.integer(regmatches(filename, m)[[1]][2])/100.0;
} else {
0.5;
}
}
# all3$CP <- sapply(all3$File.name, extract_cp)
successful$CP <- sapply(successful$File.name, extract_cp)
# plot(successful$CP ~ successful$File.name, las=2, xlab="")
just_cp <- subset(successful, successful$File.name == "CP_000" | successful$File.name == "CP_025" | successful$File.name == "default.w.CR0.25" | successful$File.name == "CP_075" | successful$File.name == "CP_100")
CP.f <- factor(just_cp$CP)
boxplot(just_cp$Population.size[just_cp$Year=="2115"]~just_cp$CP[just_cp$Year=="2115"], xlab="collection probability", ylab="N", axes=F)
axis(1, at=1:4, lab=c("0.25","0.5","0.75","1.0"))
axis(2)
summary(just_cp$Population.size[just_cp$File.name=="CP_025" & just_cp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 256.0 279.5 287.0 284.2 292.8 300.0
sd.cp025.N <- sd(just_cp$Population.size[just_cp$File.name=="CP_025" & just_cp$Year=="2115"])
sd.cp025.N
## [1] 11.32337
error.cp025.N <- qt(0.975,
df=length(just_cp$Population.size
[just_cp$File.name=="CP_025" & just_cp$Year=="2115"])-1)*sd.cp025.N/sqrt(length(just_cp$Population.size[just_cp$File.name=="CP_025" & just_cp$Year=="2115"]))
CI.cp025.N.left <- mean(just_cp$Population.size[just_cp$File.name=="CP_025"& just_cp$Year=="2115"])-error.cp025.N
CI.cp025.N.right <- mean(just_cp$Population.size[just_cp$File.name=="CP_025"& just_cp$Year=="2115"])+error.cp025.N
CI.cp025.N.left
## [1] 280.9419
CI.cp025.N.right
## [1] 287.3781
summary(just_cp$Population.size[just_cp$File.name=="default.w.CR0.25" & just_cp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 254.0 285.0 290.5 288.6 294.0 300.0
sd.cp050.N <- sd (just_cp$Population.size[just_cp$File.name=="default.w.CR0.25" &
just_cp$Year=="2115"])
sd.cp050.N
## [1] 8.458205
error.cp050.N <- qt(0.975,
df=length(just_cp$Population.size[just_cp$File.name=="default.w.CR0.25" & just_cp$Year=="2115"])-1)*sd.cp050.N/sqrt(length(just_cp$Population.size[just_cp$File.name=="default.w.CR0.25" & just_cp$Year=="2115"]))
CI.cp050.N.left <- mean(just_cp$Population.size[just_cp$File.name=="default.w.CR0.25"& just_cp$Year=="2115"])-error.cp025.N
CI.cp050.N.right <- mean(just_cp$Population.size[just_cp$File.name=="default.w.CR0.25"& just_cp$Year=="2115"])+error.cp050.N
CI.cp050.N.left
## [1] 285.4219
CI.cp050.N.right
## [1] 291.0438
summary(just_cp$Population.size[just_cp$File.name=="CP_075" & just_cp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 278.0 287.0 290.0 290.2 294.8 299.0
sd.cp075.N <- sd (just_cp$Population.size[just_cp$File.name=="CP_075" &
just_cp$Year=="2115"])
sd.cp075.N
## [1] 5.213796
error.cp075.N <- qt(0.975,
df=length(just_cp$Population.size[just_cp$File.name=="CP_075" & just_cp$Year=="2115"])-1)*sd.cp075.N/sqrt(length(just_cp$Population.size[just_cp$File.name=="CP_075" & just_cp$Year=="2115"]))
CI.cp075.N.left <- mean(just_cp$Population.size[just_cp$File.name=="CP_075"& just_cp$Year=="2115"])-error.cp025.N
CI.cp075.N.right <- mean(just_cp$Population.size[just_cp$File.name=="CP_075"& just_cp$Year=="2115"])+error.cp075.N
CI.cp075.N.left
## [1] 286.9819
CI.cp075.N.right
## [1] 291.6817
summary(just_cp$Population.size[just_cp$File.name=="CP_100" & just_cp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 280 290 294 293 297 300
sd.cp100.N <- sd (just_cp$Population.size[just_cp$File.name=="CP_100" &
just_cp$Year=="2115"])
sd.cp100.N
## [1] 4.683841
error.cp100.N <- qt(0.975,
df=length(just_cp$Population.size[just_cp$File.name=="CP_100" & just_cp$Year=="2115"])-1)*sd.cp100.N/sqrt(length(just_cp$Population.size[just_cp$File.name=="CP_100" & just_cp$Year=="2115"]))
CI.cp100.N.left <- mean(just_cp$Population.size[just_cp$File.name=="CP_100"& just_cp$Year=="2115"])-error.cp025.N
CI.cp100.N.right <- mean(just_cp$Population.size[just_cp$File.name=="CP_100"& just_cp$Year=="2115"])+error.cp100.N
CI.cp100.N.left
## [1] 289.7619
CI.cp100.N.right
## [1] 294.3111
just_cp_N.aov = aov(just_cp$Population.size[just_cp$Year == "2115"] ~ CP.f[just_cp$Year == "2115"])
summary(just_cp_N.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## CP.f[just_cp$Year == "2115"] 3 2042 680.6 10.94 1.13e-06 ***
## Residuals 196 12195 62.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(just_cp_N.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_cp$Population.size[just_cp$Year == "2115"] ~ CP.f[just_cp$Year == "2115"])
##
## $`CP.f[just_cp$Year == "2115"]`
## diff lwr upr p adj
## 0.5-0.25 4.48 0.3921122 8.567888 0.0255054
## 0.75-0.25 6.04 1.9521122 10.127888 0.0009892
## 1-0.25 8.82 4.7321122 12.907888 0.0000004
## 0.75-0.5 1.56 -2.5278878 5.647888 0.7559705
## 1-0.5 4.34 0.2521122 8.427888 0.0326644
## 1-0.75 2.78 -1.3078878 6.867888 0.2947899
plot(TukeyHSD(just_cp_N.aov))
boxplot(just_cp$Proportion.late.nesters[just_cp$Year=="2115"]~just_cp$CP[just_cp$Year=="2115"], xlab="collection probability", ylab="Proportion of late nesters", axes=F)
axis(1, at=1:4, lab=c("0.25","0.5","0.75","1.0"))
axis(2)
summary(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_025" & just_cp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1691 0.2764 0.3578 0.3593 0.4337 0.5433
sd.cp025.late <- sd (just_cp$Proportion.late.nesters[just_cp$File.name=="CP_025" &
just_cp$Year=="2115"])
sd.cp025.late
## [1] 0.0949935
error.cp025.late <- qt(0.975,
df=length(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_025" & just_cp$Year=="2115"])-1)*sd.cp025.late/sqrt(length(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_025" & just_cp$Year=="2115"]))
CI.cp025.late.left <- mean(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_025"& just_cp$Year=="2115"])-error.cp025.late
CI.cp025.late.right <- mean(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_025"& just_cp$Year=="2115"])+error.cp025.late
CI.cp025.late.left
## [1] 0.3322756
CI.cp025.late.right
## [1] 0.3862693
summary(just_cp$Proportion.late.nesters[just_cp$File.name=="default.w.CR0.25" & just_cp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1111 0.2998 0.3431 0.3433 0.4045 0.4777
sd.cp050.late <- sd (just_cp$Proportion.late.nesters[just_cp$File.name=="default.w.CR0.25" &
just_cp$Year=="2115"])
sd.cp050.late
## [1] 0.08282624
error.cp050.late <- qt(0.975,
df=length(just_cp$Proportion.late.nesters[just_cp$File.name=="default.w.CR0.25" & just_cp$Year=="2115"])-1)*sd.cp050.late/sqrt(length(just_cp$Proportion.late.nesters[just_cp$File.name=="default.w.CR0.25" & just_cp$Year=="2115"]))
CI.cp050.late.left <- mean(just_cp$Proportion.late.nesters[just_cp$File.name=="default.w.CR0.25"& just_cp$Year=="2115"])-error.cp050.late
CI.cp050.late.right <- mean(just_cp$Proportion.late.nesters[just_cp$File.name=="default.w.CR0.25"& just_cp$Year=="2115"])+error.cp050.late
CI.cp050.late.left
## [1] 0.3197148
CI.cp050.late.right
## [1] 0.3667927
summary(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_075" & just_cp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1297 0.2500 0.3060 0.3105 0.3767 0.5302
sd.cp075.late <- sd (just_cp$Proportion.late.nesters[just_cp$File.name=="CP_075" &
just_cp$Year=="2115"])
sd.cp075.late
## [1] 0.08960268
error.cp075.late <- qt(0.975,
df=length(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_075" & just_cp$Year=="2115"])-1)*sd.cp075.late/sqrt(length(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_075" & just_cp$Year=="2115"]))
CI.cp075.late.left <- mean(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_075"& just_cp$Year=="2115"])-error.cp075.late
CI.cp075.late.right <- mean(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_075"& just_cp$Year=="2115"])+error.cp075.late
CI.cp075.late.left
## [1] 0.2850431
CI.cp075.late.right
## [1] 0.3359727
summary(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_100" & just_cp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1376 0.2418 0.2938 0.2931 0.3468 0.4497
sd.cp100.late <- sd (just_cp$Proportion.late.nesters[just_cp$File.name=="CP_100" &
just_cp$Year=="2115"])
sd.cp100.late
## [1] 0.07509609
error.cp100.late <- qt(0.975,
df=length(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_100" & just_cp$Year=="2115"])-1)*sd.cp100.late/sqrt(length(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_100" & just_cp$Year=="2115"]))
CI.cp100.late.left <- mean(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_100"& just_cp$Year=="2115"])-error.cp100.late
CI.cp100.late.right <- mean(just_cp$Proportion.late.nesters[just_cp$File.name=="CP_100"& just_cp$Year=="2115"])+error.cp100.late
CI.cp100.late.left
## [1] 0.2717152
CI.cp100.late.right
## [1] 0.3143993
just_cp_late.aov = aov(just_cp$Proportion.late.nesters[just_cp$Year == "2115"] ~ CP.f[just_cp$Year == "2115"])
summary(just_cp_late.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## CP.f[just_cp$Year == "2115"] 3 0.1364 0.04548 6.156 0.000509 ***
## Residuals 196 1.4480 0.00739
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(just_cp_late.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_cp$Proportion.late.nesters[just_cp$Year == "2115"] ~ CP.f[just_cp$Year == "2115"])
##
## $`CP.f[just_cp$Year == "2115"]`
## diff lwr upr p adj
## 0.5-0.25 -0.01601865 -0.06056332 0.028526020 0.7878042
## 0.75-0.25 -0.04876459 -0.09330926 -0.004219921 0.0257282
## 1-0.25 -0.06621516 -0.11075983 -0.021670495 0.0009073
## 0.75-0.5 -0.03274594 -0.07729061 0.011798729 0.2293434
## 1-0.5 -0.05019652 -0.09474118 -0.005651846 0.0202596
## 1-0.75 -0.01745057 -0.06199524 0.027094095 0.7407923
plot(TukeyHSD(just_cp_late.aov))
boxplot(just_cp$Proportion.wild.born[just_cp$Year=="2115"]~just_cp$CP[just_cp$Year=="2115"], xlab="collection probability", ylab="proportion of wild born", axes=F)
axis(1, at=1:4, lab=c("0.25","0.5","0.75","1.0"))
axis(2)
summary(just_cp$Proportion.wild.born[just_cp$File.name=="CP_025" & just_cp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5604 0.5894 0.6136 0.6108 0.6331 0.6712
sd.cp025.wild <- sd (just_cp$Proportion.wild.born[just_cp$File.name=="CP_025" &
just_cp$Year=="2115"])
sd.cp025.wild
## [1] 0.02811591
error.cp025.wild <- qt(0.975,
df=length(just_cp$Proportion.wild.born[just_cp$File.name=="CP_025" & just_cp$Year=="2115"])-1)*sd.cp025.wild/sqrt(length(just_cp$Proportion.wild.born[just_cp$File.name=="CP_025" & just_cp$Year=="2115"]))
CI.cp025.wild.left <- mean(just_cp$Proportion.wild.born[just_cp$File.name=="CP_025"& just_cp$Year=="2115"])-error.cp025.wild
CI.cp025.wild.right <- mean(just_cp$Proportion.wild.born[just_cp$File.name=="CP_025"& just_cp$Year=="2115"])+error.cp025.wild
CI.cp025.wild.left
## [1] 0.6027743
CI.cp025.wild.right
## [1] 0.6187552
summary(just_cp$Proportion.wild.born[just_cp$File.name=="default.w.CR0.25" & just_cp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5739 0.6375 0.6511 0.6496 0.6653 0.7081
sd.cp050.wild <- sd (just_cp$Proportion.wild.born[just_cp$File.name=="default.w.CR0.25" &
just_cp$Year=="2115"])
sd.cp050.wild
## [1] 0.0277858
error.cp050.wild <- qt(0.975,
df=length(just_cp$Proportion.wild.born[just_cp$File.name=="default.w.CR0.25" & just_cp$Year=="2115"])-1)*sd.cp050.wild/sqrt(length(just_cp$Proportion.wild.born[just_cp$File.name=="default.w.CR0.25" & just_cp$Year=="2115"]))
CI.cp050.wild.left <- mean(just_cp$Proportion.wild.born[just_cp$File.name=="default.w.CR0.25"& just_cp$Year=="2115"])-error.cp050.wild
CI.cp050.wild.right <- mean(just_cp$Proportion.wild.born[just_cp$File.name=="default.w.CR0.25"& just_cp$Year=="2115"])+error.cp050.wild
CI.cp050.wild.left
## [1] 0.6417381
CI.cp050.wild.right
## [1] 0.6575313
summary(just_cp$Proportion.wild.born[just_cp$File.name=="CP_075" & just_cp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6516 0.6739 0.6863 0.6908 0.7045 0.7483
sd.cp075.wild <- sd (just_cp$Proportion.wild.born[just_cp$File.name=="CP_075" &
just_cp$Year=="2115"])
sd.cp075.wild
## [1] 0.02098683
error.cp075.wild <- qt(0.975,
df=length(just_cp$Proportion.wild.born[just_cp$File.name=="CP_075" & just_cp$Year=="2115"])-1)*sd.cp075.wild/sqrt(length(just_cp$Proportion.wild.born[just_cp$File.name=="CP_075" & just_cp$Year=="2115"]))
CI.cp075.wild.left <- mean(just_cp$Proportion.wild.born[just_cp$File.name=="CP_075"& just_cp$Year=="2115"])-error.cp075.wild
CI.cp075.wild.right <- mean(just_cp$Proportion.wild.born[just_cp$File.name=="CP_075"& just_cp$Year=="2115"])+error.cp075.wild
CI.cp075.wild.left
## [1] 0.6848332
CI.cp075.wild.right
## [1] 0.696762
summary(just_cp$Proportion.wild.born[just_cp$File.name=="CP_100" & just_cp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6567 0.6939 0.7030 0.7068 0.7214 0.7752
sd.cp100.wild <- sd (just_cp$Proportion.wild.born[just_cp$File.name=="CP_100" &
just_cp$Year=="2115"])
sd.cp100.wild
## [1] 0.02129832
error.cp100.wild <- qt(0.975,
df=length(just_cp$Proportion.wild.born[just_cp$File.name=="CP_100" & just_cp$Year=="2115"])-1)*sd.cp100.wild/sqrt(length(just_cp$Proportion.wild.born[just_cp$File.name=="CP_100" & just_cp$Year=="2115"]))
CI.cp100.wild.left <- mean(just_cp$Proportion.wild.born[just_cp$File.name=="CP_100"& just_cp$Year=="2115"])-error.cp100.wild
CI.cp100.wild.right <- mean(just_cp$Proportion.wild.born[just_cp$File.name=="CP_100"& just_cp$Year=="2115"])+error.cp100.wild
CI.cp100.wild.left
## [1] 0.7007157
CI.cp100.wild.right
## [1] 0.7128216
just_cp_wild.aov = aov(just_cp$Proportion.wild.born[just_cp$Year == "2115"] ~ CP.f[just_cp$Year == "2115"])
summary(just_cp_wild.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## CP.f[just_cp$Year == "2115"] 3 0.2793 0.09311 151.6 <2e-16 ***
## Residuals 196 0.1204 0.00061
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(just_cp_wild.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_cp$Proportion.wild.born[just_cp$Year == "2115"] ~ CP.f[just_cp$Year == "2115"])
##
## $`CP.f[just_cp$Year == "2115"]`
## diff lwr upr p adj
## 0.5-0.25 0.03886993 0.026026791 0.05171307 0.000000
## 0.75-0.25 0.08003279 0.067189654 0.09287594 0.000000
## 1-0.25 0.09600388 0.083160741 0.10884702 0.000000
## 0.75-0.5 0.04116286 0.028319722 0.05400600 0.000000
## 1-0.5 0.05713395 0.044290809 0.06997709 0.000000
## 1-0.75 0.01597109 0.003127946 0.02881423 0.008053
plot(TukeyHSD(just_cp_wild.aov))
extract_en <- function(filename) {
m <- regexec("EN_([0-9]+)", as.character(filename));
if (m[[1]][1] >= 0) {
as.integer(regmatches(filename, m)[[1]][2])/100.0;
} else {
0.5;
}
}
successful$EN <- sapply(successful$File.name, extract_en)
# plot(successful$EN ~ successful$File.name, las=2, xlab="")
just_en <- subset(successful, successful$File.name == "EN_025" | successful$File.name == "default.w.CR0.25" | successful$File.name == "EN_075")
EN.f <- factor(just_en$EN)
boxplot(just_en$Population.size[just_en$Year=="2115"]~just_en$EN[just_en$Year=="2115"], axes=F, xlab = "proportion of early nesters", ylab="N")
axis(1, at=1:3, lab=c("0.25","0.5","0.75"))
axis(2)
summary(just_en$Population.size[just_en$File.name=="EN_025" & just_en$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 275.0 287.0 291.0 290.7 295.8 300.0
sd.en025.N <- sd (just_en$Population.size[just_en$File.name=="EN_025" &
just_en$Year=="2115"])
sd.en025.N
## [1] 6.031381
error.en025.N <- qt(0.975,
df=length(just_en$Population.size[just_en$File.name=="EN_025" & just_en$Year=="2115"])-1)*sd.en025.N/sqrt(length(just_en$Population.size[just_en$File.name=="EN_025" & just_en$Year=="2115"]))
CI.en025.N.left <- mean(just_en$Population.size[just_en$File.name=="EN_025"& just_en$Year=="2115"])-error.en025.N
CI.en025.N.right <- mean(just_en$Population.size[just_en$File.name=="EN_025"& just_en$Year=="2115"])+error.en025.N
CI.en025.N.left
## [1] 288.9859
CI.en025.N.right
## [1] 292.4141
summary(just_en$Population.size[just_en$File.name=="default.w.CR0.25" & just_en$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 254.0 285.0 290.5 288.6 294.0 300.0
sd.en050.N <- sd (just_en$Population.size[just_en$File.name=="default.w.CR0.25" &
just_en$Year=="2115"])
sd.en050.N
## [1] 8.458205
error.en050.N <- qt(0.975,
df=length(just_en$Population.size[just_en$File.name=="default.w.CR0.25" & just_en$Year=="2115"])-1)*sd.en050.N/sqrt(length(just_en$Population.size[just_en$File.name=="default.w.CR0.25" & just_en$Year=="2115"]))
CI.en050.N.left <- mean(just_en$Population.size[just_en$File.name=="default.w.CR0.25"& just_en$Year=="2115"])-error.en050.N
CI.en050.N.right <- mean(just_en$Population.size[just_en$File.name=="default.w.CR0.25"& just_en$Year=="2115"])+error.en050.N
CI.en050.N.left
## [1] 286.2362
CI.en050.N.right
## [1] 291.0438
summary(just_en$Population.size[just_en$File.name=="EN_075" & just_en$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 277.0 284.0 291.5 290.3 296.8 300.0
sd.en075.N <- sd (just_en$Population.size[just_en$File.name=="EN_075" &
just_en$Year=="2115"])
sd.en075.N
## [1] 6.877381
error.en075.N <- qt(0.975,
df=length(just_en$Population.size[just_en$File.name=="EN_075" & just_en$Year=="2115"])-1)*sd.en075.N/sqrt(length(just_en$Population.size[just_en$File.name=="EN_075" & just_en$Year=="2115"]))
CI.en075.N.left <- mean(just_en$Population.size[just_en$File.name=="EN_075"& just_en$Year=="2115"])-error.en075.N
CI.en075.N.right <- mean(just_en$Population.size[just_en$File.name=="EN_075"& just_en$Year=="2115"])+error.en075.N
CI.en075.N.left
## [1] 288.3055
CI.en075.N.right
## [1] 292.2145
just_en_N.aov = aov(just_en$Population.size[just_en$Year == "2115"] ~ EN.f[just_en$Year == "2115"])
summary(just_en_N.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## EN.f[just_en$Year == "2115"] 2 118 58.85 1.137 0.323
## Residuals 147 7606 51.74
TukeyHSD(just_en_N.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_en$Population.size[just_en$Year == "2115"] ~ EN.f[just_en$Year == "2115"])
##
## $`EN.f[just_en$Year == "2115"]`
## diff lwr upr p adj
## 0.5-0.25 -2.06 -5.466157 1.346157 0.3271969
## 0.75-0.25 -0.44 -3.846157 2.966157 0.9497596
## 0.75-0.5 1.62 -1.786157 5.026157 0.4995741
plot(TukeyHSD(just_en_N.aov))
boxplot(just_en$Proportion.late.nesters[just_en$Year=="2115"]~just_en$EN[just_en$Year=="2115"], axes=F, xlab = "proportion of early nesters", ylab="proportion of late nesters")
axis(1, at=1:3, lab=c("0.25","0.5","0.75"))
axis(2)
summary(just_en$Proportion.late.nesters[just_en$File.name=="EN_025" & just_en$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2400 0.3633 0.4139 0.4215 0.4605 0.5705
sd.en025.late <- sd (just_en$Proportion.late.nesters[just_en$File.name=="EN_025" &
just_en$Year=="2115"])
sd.en025.late
## [1] 0.07453999
error.en025.late <- qt(0.975,
df=length(just_en$Proportion.late.nesters[just_en$File.name=="EN_025" & just_en$Year=="2115"])-1)*sd.en025.late/sqrt(length(just_en$Proportion.late.nesters[just_en$File.name=="EN_025" & just_en$Year=="2115"]))
CI.en025.late.left <- mean(just_en$Proportion.late.nesters[just_en$File.name=="EN_025"& just_en$Year=="2115"])-error.en025.late
CI.en025.late.right <- mean(just_en$Proportion.late.nesters[just_en$File.name=="EN_025"& just_en$Year=="2115"])+error.en025.late
CI.en025.late.left
## [1] 0.4003416
CI.en025.late.right
## [1] 0.4427097
summary(just_en$Proportion.late.nesters[just_en$File.name=="default.w.CR0.25" & just_en$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1111 0.2998 0.3431 0.3433 0.4045 0.4777
sd.en050.late <- sd (just_en$Proportion.late.nesters[just_en$File.name=="default.w.CR0.25" &
just_en$Year=="2115"])
sd.en050.late
## [1] 0.08282624
error.en050.late <- qt(0.975,
df=length(just_en$Proportion.late.nesters[just_en$File.name=="default.w.CR0.25" & just_en$Year=="2115"])-1)*sd.en050.late/sqrt(length(just_en$Proportion.late.nesters[just_en$File.name=="default.w.CR0.25" & just_en$Year=="2115"]))
CI.en050.late.left <- mean(just_en$Proportion.late.nesters[just_en$File.name=="default.w.CR0.25"& just_en$Year=="2115"])-error.en050.late
CI.en050.late.right <- mean(just_en$Proportion.late.nesters[just_en$File.name=="default.w.CR0.25"& just_en$Year=="2115"])+error.en050.late
CI.en050.late.left
## [1] 0.3197148
CI.en050.late.right
## [1] 0.3667927
summary(just_en$Proportion.late.nesters[just_en$File.name=="EN_075" & just_en$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.06333 0.13840 0.21940 0.21430 0.27320 0.42010
sd.en075.late <- sd (just_en$Proportion.late.nesters[just_en$File.name=="EN_075" &
just_en$Year=="2115"])
sd.en075.late
## [1] 0.08642984
error.en075.late <- qt(0.975,
df=length(just_en$Proportion.late.nesters[just_en$File.name=="EN_075" & just_en$Year=="2115"])-1)*sd.en075.late/sqrt(length(just_en$Proportion.late.nesters[just_en$File.name=="EN_075" & just_en$Year=="2115"]))
CI.en075.late.left <- mean(just_en$Proportion.late.nesters[just_en$File.name=="EN_075"& just_en$Year=="2115"])-error.en075.late
CI.en075.late.right <- mean(just_en$Proportion.late.nesters[just_en$File.name=="EN_075"& just_en$Year=="2115"])+error.en075.late
CI.en075.late.left
## [1] 0.1897005
CI.en075.late.right
## [1] 0.2388266
just_en_late.aov = aov(just_en$Proportion.late.nesters[just_en$Year == "2115"] ~ EN.f[just_en$Year == "2115"])
summary(just_en_late.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## EN.f[just_en$Year == "2115"] 2 1.0954 0.5477 82.62 <2e-16 ***
## Residuals 147 0.9744 0.0066
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(just_en_late.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_en$Proportion.late.nesters[just_en$Year == "2115"] ~ EN.f[just_en$Year == "2115"])
##
## $`EN.f[just_en$Year == "2115"]`
## diff lwr upr p adj
## 0.5-0.25 -0.07827189 -0.1168263 -0.03971747 1.12e-05
## 0.75-0.25 -0.20726212 -0.2458165 -0.16870770 0.00e+00
## 0.75-0.5 -0.12899024 -0.1675447 -0.09043582 0.00e+00
plot(TukeyHSD(just_en_late.aov))
boxplot(just_en$Proportion.wild.born[just_en$Year=="2115"]~just_en$EN[just_en$Year=="2115"], axes=F, xlab = "proportion of early nesters", ylab="proportion of wild born")
axis(1, at=1:3, lab=c("0.25","0.5","0.75"))
axis(2)
summary(just_en$Proportion.wild.born[just_en$File.name=="EN_025" & just_en$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6170 0.6497 0.6717 0.6673 0.6852 0.7099
sd.en025.wild <- sd (just_en$Proportion.wild.born[just_en$File.name=="EN_025" &
just_en$Year=="2115"])
sd.en025.wild
## [1] 0.02430266
error.en025.wild <- qt(0.975,
df=length(just_en$Proportion.wild.born[just_en$File.name=="EN_025" & just_en$Year=="2115"])-1)*sd.en025.wild/sqrt(length(just_en$Proportion.wild.born[just_en$File.name=="EN_025" & just_en$Year=="2115"]))
CI.en025.wild.left <- mean(just_en$Proportion.wild.born[just_en$File.name=="EN_025"& just_en$Year=="2115"])-error.en025.wild
CI.en025.wild.right <- mean(just_en$Proportion.wild.born[just_en$File.name=="EN_025"& just_en$Year=="2115"])+error.en025.wild
CI.en025.wild.left
## [1] 0.6603867
CI.en025.wild.right
## [1] 0.6742001
summary(just_en$Proportion.wild.born[just_en$File.name=="default.w.CR0.25" & just_en$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5739 0.6375 0.6511 0.6496 0.6653 0.7081
sd.en050.wild <- sd (just_en$Proportion.wild.born[just_en$File.name=="default.w.CR0.25" &
just_en$Year=="2115"])
sd.en050.wild
## [1] 0.0277858
error.en050.wild <- qt(0.975,
df=length(just_en$Proportion.wild.born[just_en$File.name=="default.w.CR0.25" & just_en$Year=="2115"])-1)*sd.en050.wild/sqrt(length(just_en$Proportion.wild.born[just_en$File.name=="default.w.CR0.25" & just_en$Year=="2115"]))
CI.en050.wild.left <- mean(just_en$Proportion.wild.born[just_en$File.name=="default.w.CR0.25"& just_en$Year=="2115"])-error.en050.wild
CI.en050.wild.right <- mean(just_en$Proportion.wild.born[just_en$File.name=="default.w.CR0.25"& just_en$Year=="2115"])+error.en050.wild
CI.en050.wild.left
## [1] 0.6417381
CI.en050.wild.right
## [1] 0.6575313
summary(just_en$Proportion.wild.born[just_en$File.name=="EN_075" & just_en$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6028 0.6355 0.6477 0.6479 0.6619 0.6929
sd.en075.wild <- sd (just_en$Proportion.wild.born[just_en$File.name=="EN_075" &
just_en$Year=="2115"])
sd.en075.wild
## [1] 0.02231972
error.en075.wild <- qt(0.975,
df=length(just_en$Proportion.wild.born[just_en$File.name=="EN_075" & just_en$Year=="2115"])-1)*sd.en075.wild/sqrt(length(just_en$Proportion.wild.born[just_en$File.name=="EN_075" & just_en$Year=="2115"]))
CI.en075.wild.left <- mean(just_en$Proportion.wild.born[just_en$File.name=="EN_075"& just_en$Year=="2115"])-error.en075.wild
CI.en075.wild.right <- mean(just_en$Proportion.wild.born[just_en$File.name=="EN_075"& just_en$Year=="2115"])+error.en075.wild
CI.en075.wild.left
## [1] 0.6415412
CI.en075.wild.right
## [1] 0.6542276
just_en_wild.aov = aov(just_en$Proportion.wild.born[just_en$Year == "2115"] ~ EN.f[just_en$Year == "2115"])
summary(just_en_wild.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## EN.f[just_en$Year == "2115"] 2 0.01153 0.005763 9.292 0.000159 ***
## Residuals 147 0.09118 0.000620
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(just_en_wild.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_en$Proportion.wild.born[just_en$Year == "2115"] ~ EN.f[just_en$Year == "2115"])
##
## $`EN.f[just_en$Year == "2115"]`
## diff lwr upr p adj
## 0.5-0.25 -0.017658686 -0.02945237 -0.005865007 0.0015198
## 0.75-0.25 -0.019409017 -0.03120270 -0.007615337 0.0004321
## 0.75-0.5 -0.001750331 -0.01354401 0.010043349 0.9342343
plot(TukeyHSD(just_en_wild.aov))
extract_rc <- function(filename) {
m <- regexec("RC_([0-9]+)", as.character(filename));
if (m[[1]][1] >= 0) {
as.integer(regmatches(filename, m)[[1]][2]);
} else {
6;
}
}
# all3$RC <- sapply(all3$File.name, extract_rc)
successful$RC <- sapply(successful$File.name, extract_rc)
# plot(successful$RC ~ successful$File.name, las=2, xlab="")
just_rc <- subset(successful, successful$File.name == "RC_00" | successful$File.name == "RC_05" | successful$File.name == "default.w.CR0.25" | successful$File.name == "RC_10" | successful$File.name == "RC_15")
RC.f <- factor(just_rc$RC)
boxplot(just_rc$Population.size[just_rc$Year=="2115"]~just_rc$RC[just_rc$Year=="2115"], axes=F, xlab = "release count", ylab = "N")
axis(1, at=1:4, lab=c("0","6","10", "15"))
axis(2)
summary(just_rc$Population.size[just_rc$File.name=="RC_00" & just_rc$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 102 102 102 102 102 102
sd.rc00.N <- sd (just_rc$Population.size[just_rc$File.name=="RC_00" &
just_rc$Year=="2115"])
sd.rc00.N
## [1] NA
error.rc00.N <- qt(0.975,
df=length(just_rc$Population.size[just_rc$File.name=="RC_00" & just_rc$Year=="2115"])-1)*sd.rc00.N/sqrt(length(just_rc$Population.size[just_rc$File.name=="RC_00" & just_rc$Year=="2115"]))
## Warning in qt(0.975, df = length(just_rc$Population.size[just_rc$File.name
## == : NaNs produced
CI.rc00.N.left <- mean(just_rc$Population.size[just_rc$File.name=="RC_00"& just_rc$Year=="2115"])-error.rc00.N
CI.rc00.N.right <- mean(just_rc$Population.size[just_rc$File.name=="RC_00"& just_rc$Year=="2115"])+error.rc00.N
CI.rc00.N.left
## [1] NaN
CI.rc00.N.right
## [1] NaN
summary(just_rc$Population.size[just_rc$File.name=="default.w.CR0.25" & just_rc$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 254.0 285.0 290.5 288.6 294.0 300.0
sd.rc06.N <- sd (just_rc$Population.size[just_rc$File.name=="default.w.CR0.25" &
just_rc$Year=="2115"])
sd.rc06.N
## [1] 8.458205
error.rc06.N <- qt(0.975,
df=length(just_rc$Population.size[just_rc$File.name=="default.w.CR0.25" & just_rc$Year=="2115"])-1)*sd.rc06.N/sqrt(length(just_rc$Population.size[just_rc$File.name=="default.w.CR0.25" & just_rc$Year=="2115"]))
CI.rc06.N.left <- mean(just_rc$Population.size[just_rc$File.name=="default.w.CR0.25"& just_rc$Year=="2115"])-error.rc06.N
CI.rc06.N.right <- mean(just_rc$Population.size[just_rc$File.name=="default.w.CR0.25"& just_rc$Year=="2115"])+error.rc06.N
CI.rc06.N.left
## [1] 286.2362
CI.rc06.N.right
## [1] 291.0438
summary(just_rc$Population.size[just_rc$File.name=="RC_10" & just_rc$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 280.0 289.0 292.0 291.9 296.0 300.0
sd.rc10.N <- sd (just_rc$Population.size[just_rc$File.name=="RC_10" &
just_rc$Year=="2115"])
sd.rc10.N
## [1] 5.23493
error.rc10.N <- qt(0.975,
df=length(just_rc$Population.size[just_rc$File.name=="RC_10" & just_rc$Year=="2115"])-1)*sd.rc10.N/sqrt(length(just_rc$Population.size[just_rc$File.name=="RC_10" & just_rc$Year=="2115"]))
CI.rc10.N.left <- mean(just_rc$Population.size[just_rc$File.name=="RC_10"& just_rc$Year=="2115"])-error.rc10.N
CI.rc10.N.right <- mean(just_rc$Population.size[just_rc$File.name=="RC_10"& just_rc$Year=="2115"])+error.rc10.N
CI.rc10.N.left
## [1] 290.4522
CI.rc10.N.right
## [1] 293.4278
summary(just_rc$Population.size[just_rc$File.name=="RC_15" & just_rc$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 281.0 289.2 292.0 292.0 296.0 300.0
sd.rc15.N <- sd (just_rc$Population.size[just_rc$File.name=="RC_15" &
just_rc$Year=="2115"])
sd.rc15.N
## [1] 4.742169
error.rc15.N <- qt(0.975,
df=length(just_rc$Population.size[just_rc$File.name=="RC_15" & just_rc$Year=="2115"])-1)*sd.rc15.N/sqrt(length(just_rc$Population.size[just_rc$File.name=="RC_15" & just_rc$Year=="2115"]))
CI.rc15.N.left <- mean(just_rc$Population.size[just_rc$File.name=="RC_15"& just_rc$Year=="2115"])-error.rc15.N
CI.rc15.N.right <- mean(just_rc$Population.size[just_rc$File.name=="RC_15"& just_rc$Year=="2115"])+error.rc15.N
CI.rc15.N.left
## [1] 290.6923
CI.rc15.N.right
## [1] 293.3877
just_rc_N.aov = aov(just_rc$Population.size[just_rc$Year == "2115"] ~ RC.f[just_rc$Year == "2115"])
summary(just_rc_N.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## RC.f[just_rc$Year == "2115"] 3 35811 11937 294.9 <2e-16 ***
## Residuals 147 5950 40
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(just_rc_N.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_rc$Population.size[just_rc$Year == "2115"] ~ RC.f[just_rc$Year == "2115"])
##
## $`RC.f[just_rc$Year == "2115"]`
## diff lwr upr p adj
## 6-0 186.64 169.942203979 203.337796 0.0000000
## 10-0 189.94 173.242203979 206.637796 0.0000000
## 15-0 190.04 173.342203979 206.737796 0.0000000
## 10-6 3.30 -0.006656341 6.606656 0.0506734
## 15-6 3.40 0.093343659 6.706656 0.0413299
## 15-10 0.10 -3.206656341 3.406656 0.9998252
plot(TukeyHSD(just_rc_N.aov))
boxplot(just_rc$Proportion.late.nesters[just_rc$Year=="2115"]~just_rc$RC[just_rc$Year=="2115"], axes=F, xlab = "release count", ylab = "proportion late nesters")
axis(1, at=1:4, lab=c("0","6","10", "15"))
axis(2)
summary(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_00" & just_rc$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.9314 0.9314 0.9314 0.9314 0.9314 0.9314
sd.rc00.late <- sd (just_rc$Proportion.late.nesters[just_rc$File.name=="RC_00" &
just_rc$Year=="2115"])
sd.rc00.late
## [1] NA
error.rc00.late <- qt(0.975,
df=length(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_00" & just_rc$Year=="2115"])-1)*sd.rc00.late/sqrt(length(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_00" & just_rc$Year=="2115"]))
## Warning in qt(0.975, df = length(just_rc$Proportion.late.nesters[just_rc
## $File.name == : NaNs produced
CI.rc00.late.left <- mean(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_00"& just_rc$Year=="2115"])-error.rc00.late
CI.rc00.late.right <- mean(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_00"& just_rc$Year=="2115"])+error.rc00.late
CI.rc00.late.left
## [1] NaN
CI.rc00.late.right
## [1] NaN
summary(just_rc$Proportion.late.nesters[just_rc$File.name=="default.w.CR0.25" & just_rc$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1111 0.2998 0.3431 0.3433 0.4045 0.4777
sd.rc06.late <- sd (just_rc$Proportion.late.nesters[just_rc$File.name=="default.w.CR0.25" &
just_rc$Year=="2115"])
sd.rc06.late
## [1] 0.08282624
error.rc06.late <- qt(0.975,
df=length(just_rc$Proportion.late.nesters[just_rc$File.name=="default.w.CR0.25" & just_rc$Year=="2115"])-1)*sd.rc06.late/sqrt(length(just_rc$Proportion.late.nesters[just_rc$File.name=="default.w.CR0.25" & just_rc$Year=="2115"]))
CI.rc06.late.left <- mean(just_rc$Proportion.late.nesters[just_rc$File.name=="default.w.CR0.25"& just_rc$Year=="2115"])-error.rc06.late
CI.rc06.late.right <- mean(just_rc$Proportion.late.nesters[just_rc$File.name=="default.w.CR0.25"& just_rc$Year=="2115"])+error.rc06.late
CI.rc06.late.left
## [1] 0.3197148
CI.rc06.late.right
## [1] 0.3667927
summary(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_10" & just_rc$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1279 0.2599 0.2889 0.2880 0.3263 0.4765
sd.rc10.late <- sd (just_rc$Proportion.late.nesters[just_rc$File.name=="RC_10" &
just_rc$Year=="2115"])
sd.rc10.late
## [1] 0.0644555
error.rc10.late <- qt(0.975,
df=length(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_10" & just_rc$Year=="2115"])-1)*sd.rc10.late/sqrt(length(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_10" & just_rc$Year=="2115"]))
CI.rc10.late.left <- mean(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_10"& just_rc$Year=="2115"])-error.rc10.late
CI.rc10.late.right <- mean(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_10"& just_rc$Year=="2115"])+error.rc10.late
CI.rc10.late.left
## [1] 0.2696403
CI.rc10.late.right
## [1] 0.3062764
summary(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_15" & just_rc$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.03082 0.17520 0.20480 0.20960 0.25280 0.30740
sd.rc15.late <- sd (just_rc$Proportion.late.nesters[just_rc$File.name=="RC_15" &
just_rc$Year=="2115"])
sd.rc15.late
## [1] 0.05725961
error.rc15.late <- qt(0.975,
df=length(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_15" & just_rc$Year=="2115"])-1)*sd.rc15.late/sqrt(length(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_15" & just_rc$Year=="2115"]))
CI.rc15.late.left <- mean(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_15"& just_rc$Year=="2115"])-error.rc15.late
CI.rc15.late.right <- mean(just_rc$Proportion.late.nesters[just_rc$File.name=="RC_15"& just_rc$Year=="2115"])+error.rc15.late
CI.rc15.late.left
## [1] 0.1933189
CI.rc15.late.right
## [1] 0.2258649
just_rc_late.aov = aov(just_rc$Proportion.late.nesters[just_rc$Year == "2115"] ~ RC.f[just_rc$Year == "2115"])
summary(just_rc_late.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## RC.f[just_rc$Year == "2115"] 3 0.8722 0.29073 61.02 <2e-16 ***
## Residuals 147 0.7004 0.00476
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(just_rc_late.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_rc$Proportion.late.nesters[just_rc$Year == "2115"] ~ RC.f[just_rc$Year == "2115"])
##
## $`RC.f[just_rc$Year == "2115"]`
## diff lwr upr p adj
## 6-0 -0.58811876 -0.76927629 -0.40696122 0.0000000
## 10-0 -0.64341421 -0.82457174 -0.46225668 0.0000000
## 15-0 -0.72178061 -0.90293814 -0.54062307 0.0000000
## 10-6 -0.05529545 -0.09116999 -0.01942092 0.0005626
## 15-6 -0.13366185 -0.16953639 -0.09778731 0.0000000
## 15-10 -0.07836640 -0.11424093 -0.04249186 0.0000004
plot(TukeyHSD(just_rc_late.aov))
boxplot(just_rc$Proportion.wild.born[just_rc$Year=="2115"]~just_rc$RC[just_rc$Year=="2115"], axes=F, xlab = "release count", ylab = "proportion wild born")
axis(1, at=1:4, lab=c("0","6","10", "15"))
axis(2)
summary(just_rc$Proportion.wild.born[just_rc$File.name=="RC_00" & just_rc$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 1 1 1 1 1
sd.rc00.wild <- sd (just_rc$Proportion.wild.born[just_rc$File.name=="RC_00" &
just_rc$Year=="2115"])
sd.rc00.wild
## [1] NA
error.rc00.wild <- qt(0.975,
df=length(just_rc$Proportion.wild.born[just_rc$File.name=="RC_00" & just_rc$Year=="2115"])-1)*sd.rc00.wild/sqrt(length(just_rc$Proportion.wild.born[just_rc$File.name=="RC_00" & just_rc$Year=="2115"]))
## Warning in qt(0.975, df = length(just_rc$Proportion.wild.born[just_rc
## $File.name == : NaNs produced
CI.rc00.wild.left <- mean(just_rc$Proportion.wild.born[just_rc$File.name=="RC_00"& just_rc$Year=="2115"])-error.rc00.wild
CI.rc00.wild.right <- mean(just_rc$Proportion.wild.born[just_rc$File.name=="RC_00"& just_rc$Year=="2115"])+error.rc00.wild
CI.rc00.wild.left
## [1] NaN
CI.rc00.wild.right
## [1] NaN
summary(just_rc$Proportion.wild.born[just_rc$File.name=="default.w.CR0.25" & just_rc$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5739 0.6375 0.6511 0.6496 0.6653 0.7081
sd.rc06.wild <- sd (just_rc$Proportion.wild.born[just_rc$File.name=="default.w.CR0.25" &
just_rc$Year=="2115"])
sd.rc06.wild
## [1] 0.0277858
error.rc06.wild <- qt(0.975,
df=length(just_rc$Proportion.wild.born[just_rc$File.name=="default.w.CR0.25" & just_rc$Year=="2115"])-1)*sd.rc06.wild/sqrt(length(just_rc$Proportion.wild.born[just_rc$File.name=="default.w.CR0.25" & just_rc$Year=="2115"]))
CI.rc06.wild.left <- mean(just_rc$Proportion.wild.born[just_rc$File.name=="default.w.CR0.25"& just_rc$Year=="2115"])-error.rc06.wild
CI.rc06.wild.right <- mean(just_rc$Proportion.wild.born[just_rc$File.name=="default.w.CR0.25"& just_rc$Year=="2115"])+error.rc06.wild
CI.rc06.wild.left
## [1] 0.6417381
CI.rc06.wild.right
## [1] 0.6575313
summary(just_rc$Proportion.wild.born[just_rc$File.name=="RC_10" & just_rc$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.4710 0.5214 0.5378 0.5382 0.5570 0.5898
sd.rc10.wild <- sd (just_rc$Proportion.wild.born[just_rc$File.name=="RC_10" &
just_rc$Year=="2115"])
sd.rc10.wild
## [1] 0.02719695
error.rc10.wild <- qt(0.975,
df=length(just_rc$Proportion.wild.born[just_rc$File.name=="RC_10" & just_rc$Year=="2115"])-1)*sd.rc10.wild/sqrt(length(just_rc$Proportion.wild.born[just_rc$File.name=="RC_10" & just_rc$Year=="2115"]))
CI.rc10.wild.left <- mean(just_rc$Proportion.wild.born[just_rc$File.name=="RC_10"& just_rc$Year=="2115"])-error.rc10.wild
CI.rc10.wild.right <- mean(just_rc$Proportion.wild.born[just_rc$File.name=="RC_10"& just_rc$Year=="2115"])+error.rc10.wild
CI.rc10.wild.left
## [1] 0.5304617
CI.rc10.wild.right
## [1] 0.5459203
summary(just_rc$Proportion.wild.born[just_rc$File.name=="RC_15" & just_rc$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3514 0.4010 0.4122 0.4151 0.4372 0.4744
sd.rc15.wild <- sd (just_rc$Proportion.wild.born[just_rc$File.name=="RC_15" &
just_rc$Year=="2115"])
sd.rc15.wild
## [1] 0.0262669
error.rc15.wild <- qt(0.975,
df=length(just_rc$Proportion.wild.born[just_rc$File.name=="RC_15" & just_rc$Year=="2115"])-1)*sd.rc15.wild/sqrt(length(just_rc$Proportion.wild.born[just_rc$File.name=="RC_15" & just_rc$Year=="2115"]))
CI.rc15.wild.left <- mean(just_rc$Proportion.wild.born[just_rc$File.name=="RC_15"& just_rc$Year=="2115"])-error.rc15.wild
CI.rc15.wild.right <- mean(just_rc$Proportion.wild.born[just_rc$File.name=="RC_15"& just_rc$Year=="2115"])+error.rc15.wild
CI.rc15.wild.left
## [1] 0.4076446
CI.rc15.wild.right
## [1] 0.4225745
just_rc_wild.aov = aov(just_rc$Proportion.wild.born[just_rc$Year == "2115"] ~ RC.f[just_rc$Year == "2115"])
summary(just_rc_wild.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## RC.f[just_rc$Year == "2115"] 3 1.5916 0.5305 722.9 <2e-16 ***
## Residuals 147 0.1079 0.0007
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(just_rc_wild.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_rc$Proportion.wild.born[just_rc$Year == "2115"] ~ RC.f[just_rc$Year == "2115"])
##
## $`RC.f[just_rc$Year == "2115"]`
## diff lwr upr p adj
## 6-0 -0.3503653 -0.4214647 -0.27926592 0
## 10-0 -0.4618090 -0.5329084 -0.39070963 0
## 15-0 -0.5848905 -0.6559898 -0.51379108 0
## 10-6 -0.1114437 -0.1255235 -0.09736394 0
## 15-6 -0.2345252 -0.2486049 -0.22044539 0
## 15-10 -0.1230815 -0.1371612 -0.10900168 0
plot(TukeyHSD(just_rc_wild.aov))
extract_np <- function(filename) {
m <- regexec("NP_([0-9]+)", as.character(filename));
if (m[[1]][1] >= 0) {
as.integer(regmatches(filename, m)[[1]][2])/100.0;
} else {
0.5;
}
}
successful$NP <- sapply(successful$File.name, extract_np)
# plot(successful$NP ~ successful$File.name, las=2, xlab="")
just_np <- subset(successful, successful$File.name == "NP_025" | successful$File.name == "default.w.CR0.25" | successful$File.name == "NP_075")
NP.f <- factor(just_np$NP)
boxplot(just_np$Population.size[just_np$Year=="2115"]~just_np$NP[just_np$Year=="2115"], axes=F, xlab = "nesting probability", ylab = "N")
axis(1, at=1:3, lab=c("0.25","0.5","0.75"))
axis(2)
summary(just_np$Population.size[just_np$File.name=="NP_025" & just_np$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 152.0 175.0 181.5 181.3 188.0 210.0
sd.np025.N <- sd (just_np$Population.size[just_np$File.name=="NP_025" &
just_np$Year=="2115"])
sd.np025.N
## [1] 12.43039
error.np025.N <- qt(0.975,
df=length(just_np$Population.size[just_np$File.name=="NP_025" & just_np$Year=="2115"])-1)*sd.np025.N/sqrt(length(just_np$Population.size[just_np$File.name=="NP_025" & just_np$Year=="2115"]))
CI.np025.N.left <- mean(just_np$Population.size[just_np$File.name=="NP_025"& just_np$Year=="2115"])-error.np025.N
CI.np025.N.right <- mean(just_np$Population.size[just_np$File.name=="NP_025"& just_np$Year=="2115"])+error.np025.N
CI.np025.N.left
## [1] 177.8073
CI.np025.N.right
## [1] 184.8727
summary(just_np$Population.size[just_np$File.name=="default.w.CR0.25" & just_np$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 254.0 285.0 290.5 288.6 294.0 300.0
sd.np050.N <- sd (just_np$Population.size[just_np$File.name=="default.w.CR0.25" &
just_np$Year=="2115"])
sd.np050.N
## [1] 8.458205
error.np050.N <- qt(0.975,
df=length(just_np$Population.size[just_np$File.name=="default.w.CR0.25" & just_np$Year=="2115"])-1)*sd.np050.N/sqrt(length(just_np$Population.size[just_np$File.name=="default.w.CR0.25" & just_np$Year=="2115"]))
CI.np050.N.left <- mean(just_np$Population.size[just_np$File.name=="default.w.CR0.25"& just_np$Year=="2115"])-error.np050.N
CI.np050.N.right <- mean(just_np$Population.size[just_np$File.name=="default.w.CR0.25"& just_np$Year=="2115"])+error.np050.N
CI.np050.N.left
## [1] 286.2362
CI.np050.N.right
## [1] 291.0438
summary(just_np$Population.size[just_np$File.name=="NP_075" & just_np$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 279.0 288.0 292.0 291.8 295.8 299.0
sd.np075.N <- sd (just_np$Population.size[just_np$File.name=="NP_075" &
just_np$Year=="2115"])
sd.np075.N
## [1] 5.06162
error.np075.N <- qt(0.975,
df=length(just_np$Population.size[just_np$File.name=="NP_075" & just_np$Year=="2115"])-1)*sd.np075.N/sqrt(length(just_np$Population.size[just_np$File.name=="NP_075" & just_np$Year=="2115"]))
CI.np075.N.left <- mean(just_np$Population.size[just_np$File.name=="NP_075"& just_np$Year=="2115"])-error.np075.N
CI.np075.N.right <- mean(just_np$Population.size[just_np$File.name=="NP_075"& just_np$Year=="2115"])+error.np075.N
CI.np075.N.left
## [1] 290.3815
CI.np075.N.right
## [1] 293.2585
just_np_N.aov = aov(just_np$Population.size[just_np$Year == "2115"] ~ NP.f[just_np$Year == "2115"])
summary(just_np_N.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## NP.f[just_np$Year == "2115"] 2 395487 197744 2357 <2e-16 ***
## Residuals 147 12332 84
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(just_np_N.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_np$Population.size[just_np$Year == "2115"] ~ NP.f[just_np$Year == "2115"])
##
## $`NP.f[just_np$Year == "2115"]`
## diff lwr upr p adj
## 0.5-0.25 107.30 102.962738 111.637262 0.0000000
## 0.75-0.25 110.48 106.142738 114.817262 0.0000000
## 0.75-0.5 3.18 -1.157262 7.517262 0.1953281
plot(TukeyHSD(just_np_N.aov))
boxplot(just_np$Proportion.late.nesters[just_np$Year=="2115"]~just_np$NP[just_np$Year=="2115"], axes=F, xlab = "nesting probability", ylab = "proportion of late nesters")
axis(1, at=1:3, lab=c("0.25","0.5","0.75"))
axis(2)
summary(just_np$Proportion.late.nesters[just_np$File.name=="NP_025" & just_np$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1154 0.1917 0.2333 0.2395 0.2863 0.3901
sd.np025.late <- sd (just_np$Proportion.late.nesters[just_np$File.name=="NP_025" &
just_np$Year=="2115"])
sd.np025.late
## [1] 0.06005491
error.np025.late <- qt(0.975,
df=length(just_np$Proportion.late.nesters[just_np$File.name=="NP_025" & just_np$Year=="2115"])-1)*sd.np025.late/sqrt(length(just_np$Proportion.late.nesters[just_np$File.name=="NP_025" & just_np$Year=="2115"]))
CI.np025.late.left <- mean(just_np$Proportion.late.nesters[just_np$File.name=="NP_025"& just_np$Year=="2115"])-error.np025.late
CI.np025.late.right <- mean(just_np$Proportion.late.nesters[just_np$File.name=="NP_025"& just_np$Year=="2115"])+error.np025.late
CI.np025.late.left
## [1] 0.2223901
CI.np025.late.right
## [1] 0.2565249
summary(just_np$Proportion.late.nesters[just_np$File.name=="default.w.CR0.25" & just_np$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1111 0.2998 0.3431 0.3433 0.4045 0.4777
sd.np050.late <- sd (just_np$Proportion.late.nesters[just_np$File.name=="default.w.CR0.25" &
just_np$Year=="2115"])
sd.np050.late
## [1] 0.08282624
error.np050.late <- qt(0.975,
df=length(just_np$Proportion.late.nesters[just_np$File.name=="default.w.CR0.25" & just_np$Year=="2115"])-1)*sd.np050.late/sqrt(length(just_np$Proportion.late.nesters[just_np$File.name=="default.w.CR0.25" & just_np$Year=="2115"]))
CI.np050.late.left <- mean(just_np$Proportion.late.nesters[just_np$File.name=="default.w.CR0.25"& just_np$Year=="2115"])-error.np050.late
CI.np050.late.right <- mean(just_np$Proportion.late.nesters[just_np$File.name=="default.w.CR0.25"& just_np$Year=="2115"])+error.np050.late
CI.np050.late.left
## [1] 0.3197148
CI.np050.late.right
## [1] 0.3667927
summary(just_np$Proportion.late.nesters[just_np$File.name=="NP_075" & just_np$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1649 0.3205 0.3755 0.3744 0.4288 0.6276
sd.np075.late <- sd (just_np$Proportion.late.nesters[just_np$File.name=="NP_075" &
just_np$Year=="2115"])
sd.np075.late
## [1] 0.09426914
error.np075.late <- qt(0.975,
df=length(just_np$Proportion.late.nesters[just_np$File.name=="NP_075" & just_np$Year=="2115"])-1)*sd.np075.late/sqrt(length(just_np$Proportion.late.nesters[just_np$File.name=="NP_075" & just_np$Year=="2115"]))
CI.np075.late.left <- mean(just_np$Proportion.late.nesters[just_np$File.name=="NP_075"& just_np$Year=="2115"])-error.np075.late
CI.np075.late.right <- mean(just_np$Proportion.late.nesters[just_np$File.name=="NP_075"& just_np$Year=="2115"])+error.np075.late
CI.np075.late.left
## [1] 0.3476033
CI.np075.late.right
## [1] 0.4011853
just_np_late.aov = aov(just_np$Proportion.late.nesters[just_np$Year == "2115"] ~ NP.f[just_np$Year == "2115"])
summary(just_np_late.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## NP.f[just_np$Year == "2115"] 2 0.4992 0.24959 38.69 3.17e-14 ***
## Residuals 147 0.9483 0.00645
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(just_np_late.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_np$Proportion.late.nesters[just_np$Year == "2115"] ~ NP.f[just_np$Year == "2115"])
##
## $`NP.f[just_np$Year == "2115"]`
## diff lwr upr p adj
## 0.5-0.25 0.10379627 0.065762089 0.14183044 0.000000
## 0.75-0.25 0.13493681 0.096902634 0.17297099 0.000000
## 0.75-0.5 0.03114055 -0.006893631 0.06917472 0.131573
plot(TukeyHSD(just_np_late.aov))
boxplot(just_np$Proportion.wild.born[just_np$Year=="2115"]~just_np$NP[just_np$Year=="2115"], axes=F, xlab = "nesting probability", ylab = "proportion wild born")
axis(1, at=1:3, lab=c("0.25","0.5","0.75"))
axis(2)
summary(just_np$Proportion.wild.born[just_np$File.name=="NP_025" & just_np$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2917 0.3490 0.3746 0.3760 0.4054 0.4629
sd.np025.wild <- sd (just_np$Proportion.wild.born[just_np$File.name=="NP_025" &
just_np$Year=="2115"])
sd.np025.wild
## [1] 0.04071909
error.np025.wild <- qt(0.975,
df=length(just_np$Proportion.wild.born[just_np$File.name=="NP_025" & just_np$Year=="2115"])-1)*sd.np025.wild/sqrt(length(just_np$Proportion.wild.born[just_np$File.name=="NP_025" & just_np$Year=="2115"]))
CI.np025.wild.left <- mean(just_np$Proportion.wild.born[just_np$File.name=="NP_025"& just_np$Year=="2115"])-error.np025.wild
CI.np025.wild.right <- mean(just_np$Proportion.wild.born[just_np$File.name=="NP_025"& just_np$Year=="2115"])+error.np025.wild
CI.np025.wild.left
## [1] 0.3644493
CI.np025.wild.right
## [1] 0.3875938
summary(just_np$Proportion.wild.born[just_np$File.name=="default.w.CR0.25" & just_np$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5739 0.6375 0.6511 0.6496 0.6653 0.7081
sd.np050.wild <- sd (just_np$Proportion.wild.born[just_np$File.name=="default.w.CR0.25" &
just_np$Year=="2115"])
sd.np050.wild
## [1] 0.0277858
error.np050.wild <- qt(0.975,
df=length(just_np$Proportion.wild.born[just_np$File.name=="default.w.CR0.25" & just_np$Year=="2115"])-1)*sd.np050.wild/sqrt(length(just_np$Proportion.wild.born[just_np$File.name=="default.w.CR0.25" & just_np$Year=="2115"]))
CI.np050.wild.left <- mean(just_np$Proportion.wild.born[just_np$File.name=="default.w.CR0.25"& just_np$Year=="2115"])-error.np050.wild
CI.np050.wild.right <- mean(just_np$Proportion.wild.born[just_np$File.name=="default.w.CR0.25"& just_np$Year=="2115"])+error.np050.wild
CI.np050.wild.left
## [1] 0.6417381
CI.np050.wild.right
## [1] 0.6575313
summary(just_np$Proportion.wild.born[just_np$File.name=="NP_075" & just_np$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6952 0.7215 0.7387 0.7387 0.7535 0.7823
sd.np075.wild <- sd (just_np$Proportion.wild.born[just_np$File.name=="NP_075" &
just_np$Year=="2115"])
sd.np075.wild
## [1] 0.02134374
error.np075.wild <- qt(0.975,
df=length(just_np$Proportion.wild.born[just_np$File.name=="NP_075" & just_np$Year=="2115"])-1)*sd.np075.wild/sqrt(length(just_np$Proportion.wild.born[just_np$File.name=="NP_075" & just_np$Year=="2115"]))
CI.np075.wild.left <- mean(just_np$Proportion.wild.born[just_np$File.name=="NP_075"& just_np$Year=="2115"])-error.np075.wild
CI.np075.wild.right <- mean(just_np$Proportion.wild.born[just_np$File.name=="NP_075"& just_np$Year=="2115"])+error.np075.wild
CI.np075.wild.left
## [1] 0.7326354
CI.np075.wild.right
## [1] 0.744767
just_np_wild.aov = aov(just_np$Proportion.wild.born[just_np$Year == "2115"] ~ NP.f[just_np$Year == "2115"])
summary(just_np_wild.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## NP.f[just_np$Year == "2115"] 2 3.572 1.786 1857 <2e-16 ***
## Residuals 147 0.141 0.001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(just_np_wild.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_np$Proportion.wild.born[just_np$Year == "2115"] ~ NP.f[just_np$Year == "2115"])
##
## $`NP.f[just_np$Year == "2115"]`
## diff lwr upr p adj
## 0.5-0.25 0.27361314 0.25892669 0.2882996 0
## 0.75-0.25 0.36267965 0.34799320 0.3773661 0
## 0.75-0.5 0.08906651 0.07438007 0.1037530 0
plot(TukeyHSD(just_np_wild.aov))
extract_rnp <- function(filename) {
m <- regexec("RNP_([0-9]+)", as.character(filename));
if (m[[1]][1] >= 0) {
as.integer(regmatches(filename, m)[[1]][2])/100.0;
} else {
0.5;
}
}
successful$RNP <- sapply(successful$File.name, extract_rnp)
# plot(successful$RNP ~ successful$File.name, las=2, xlab="")
just_rnp <- subset(successful, successful$File.name == "RNP_025" | successful$File.name == "default.w.CR0.25" | successful$File.name == "RNP_075")
RNP.f <- factor(just_rnp$RNP)
boxplot(just_rnp$Population.size[just_rnp$Year=="2115"]~just_rnp$RNP[just_rnp$Year=="2115"], axes=F, xlab = "renesting probability", ylab = "N")
axis(1, at=1:3, lab=c("0.25","0.5","0.75"))
axis(2)
summary(just_rnp$Population.size[just_rnp$File.name=="RNP_025" & just_rnp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 173.0 195.0 208.0 209.6 220.0 265.0
sd.rnp025.N <- sd (just_rnp$Population.size[just_rnp$File.name=="RNP_025" &
just_rnp$Year=="2115"])
sd.rnp025.N
## [1] 19.36554
error.rnp025.N <- qt(0.975,
df=length(just_rnp$Population.size[just_rnp$File.name=="RNP_025" & just_rnp$Year=="2115"])-1)*sd.rnp025.N/sqrt(length(just_rnp$Population.size[just_rnp$File.name=="RNP_025" & just_rnp$Year=="2115"]))
CI.rnp025.N.left <- mean(just_rnp$Population.size[just_rnp$File.name=="RNP_025"& just_rnp$Year=="2115"])-error.rnp025.N
CI.rnp025.N.right <- mean(just_rnp$Population.size[just_rnp$File.name=="RNP_025"& just_rnp$Year=="2115"])+error.rnp025.N
CI.rnp025.N.left
## [1] 204.0764
CI.rnp025.N.right
## [1] 215.0836
summary(just_rnp$Population.size[just_rnp$File.name=="default.w.CR0.25" & just_rnp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 254.0 285.0 290.5 288.6 294.0 300.0
sd.rnp050.N <- sd (just_rnp$Population.size[just_rnp$File.name=="default.w.CR0.25" &
just_rnp$Year=="2115"])
sd.rnp050.N
## [1] 8.458205
error.rnp050.N <- qt(0.975,
df=length(just_rnp$Population.size[just_rnp$File.name=="default.w.CR0.25" & just_rnp$Year=="2115"])-1)*sd.rnp050.N/sqrt(length(just_rnp$Population.size[just_rnp$File.name=="default.w.CR0.25" & just_rnp$Year=="2115"]))
CI.rnp050.N.left <- mean(just_rnp$Population.size[just_rnp$File.name=="default.w.CR0.25"& just_rnp$Year=="2115"])-error.rnp050.N
CI.rnp050.N.right <- mean(just_rnp$Population.size[just_rnp$File.name=="default.w.CR0.25"& just_rnp$Year=="2115"])+error.rnp050.N
CI.rnp050.N.left
## [1] 286.2362
CI.rnp050.N.right
## [1] 291.0438
summary(just_rnp$Population.size[just_rnp$File.name=="RNP_075" & just_rnp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 277.0 290.2 294.0 292.7 296.0 300.0
sd.rnp075.N <- sd (just_rnp$Population.size[just_rnp$File.name=="RNP_075" &
just_rnp$Year=="2115"])
sd.rnp075.N
## [1] 5.2668
error.rnp075.N <- qt(0.975,
df=length(just_rnp$Population.size[just_rnp$File.name=="RNP_075" & just_rnp$Year=="2115"])-1)*sd.rnp075.N/sqrt(length(just_rnp$Population.size[just_rnp$File.name=="RNP_075" & just_rnp$Year=="2115"]))
CI.rnp075.N.left <- mean(just_rnp$Population.size[just_rnp$File.name=="RNP_075"& just_rnp$Year=="2115"])-error.rnp075.N
CI.rnp075.N.right <- mean(just_rnp$Population.size[just_rnp$File.name=="RNP_075"& just_rnp$Year=="2115"])+error.rnp075.N
CI.rnp075.N.left
## [1] 291.1632
CI.rnp075.N.right
## [1] 294.1568
just_rnp_N.aov = aov(just_rnp$Population.size[just_rnp$Year == "2115"] ~ RNP.f[just_rnp$Year == "2115"])
summary(just_rnp_N.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## RNP.f[just_rnp$Year == "2115"] 2 219482 109741 694.1 <2e-16 ***
## Residuals 147 23241 158
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(just_rnp_N.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_rnp$Population.size[just_rnp$Year == "2115"] ~ RNP.f[just_rnp$Year == "2115"])
##
## $`RNP.f[just_rnp$Year == "2115"]`
## diff lwr upr p adj
## 0.5-0.25 79.06 73.1058 85.0142 0.0000000
## 0.75-0.25 83.08 77.1258 89.0342 0.0000000
## 0.75-0.5 4.02 -1.9342 9.9742 0.2494891
plot(TukeyHSD(just_rnp_N.aov))
boxplot(just_rnp$Proportion.late.nesters[just_rnp$Year=="2115"]~just_rnp$RNP[just_rnp$Year=="2115"], axes=F, xlab = "renesting probability", ylab = "proportion late nesters")
axis(1, at=1:3, lab=c("0.25","0.5","0.75"))
axis(2)
summary(just_rnp$Proportion.late.nesters[just_rnp$File.name=="RNP_025" & just_rnp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1818 0.3350 0.3999 0.3860 0.4414 0.5556
sd.rnp025.late <- sd (just_rnp$Proportion.late.nesters[just_rnp$File.name=="RNP_025" &
just_rnp$Year=="2115"])
sd.rnp025.late
## [1] 0.08777547
error.rnp025.late <- qt(0.975,
df=length(just_rnp$Proportion.late.nesters[just_rnp$File.name=="RNP_025" & just_rnp$Year=="2115"])-1)*sd.rnp025.late/sqrt(length(just_rnp$Proportion.late.nesters[just_rnp$File.name=="RNP_025" & just_rnp$Year=="2115"]))
CI.rnp025.late.left <- mean(just_rnp$Proportion.late.nesters[just_rnp$File.name=="RNP_025"& just_rnp$Year=="2115"])-error.rnp025.late
CI.rnp025.late.right <- mean(just_rnp$Proportion.late.nesters[just_rnp$File.name=="RNP_025"& just_rnp$Year=="2115"])+error.rnp025.late
CI.rnp025.late.left
## [1] 0.3610315
CI.rnp025.late.right
## [1] 0.4109225
summary(just_rnp$Proportion.late.nesters[just_rnp$File.name=="default.w.CR0.25" & just_rnp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1111 0.2998 0.3431 0.3433 0.4045 0.4777
sd.rpn050.late <- sd (just_rnp$Proportion.late.nesters[just_rnp$File.name=="default.w.CR0.25" &
just_rnp$Year=="2115"])
sd.rpn050.late
## [1] 0.08282624
error.rpn050.late <- qt(0.975,
df=length(just_rnp$Proportion.late.nesters[just_rnp$File.name=="default.w.CR0.25" & just_rnp$Year=="2115"])-1)*sd.rpn050.late/sqrt(length(just_rnp$Proportion.late.nesters[just_rnp$File.name=="default.w.CR0.25" & just_rnp$Year=="2115"]))
CI.rpn050.late.left <- mean(just_rnp$Proportion.late.nesters[just_rnp$File.name=="default.w.CR0.25"& just_rnp$Year=="2115"])-error.rpn050.late
CI.rpn050.late.right <- mean(just_rnp$Proportion.late.nesters[just_rnp$File.name=="default.w.CR0.25"& just_rnp$Year=="2115"])+error.rpn050.late
CI.rpn050.late.left
## [1] 0.3197148
CI.rpn050.late.right
## [1] 0.3667927
summary(just_rnp$Proportion.late.nesters[just_rnp$File.name=="RNP_075" & just_rnp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1119 0.2156 0.2487 0.2590 0.3076 0.4533
sd.rnp075.late <- sd (just_rnp$Proportion.late.nesters[just_rnp$File.name=="RNP_075" &
just_rnp$Year=="2115"])
sd.rnp075.late
## [1] 0.07658407
error.rnp075.late <- qt(0.975,
df=length(just_rnp$Proportion.late.nesters[just_rnp$File.name=="RNP_075" & just_rnp$Year=="2115"])-1)*sd.rnp075.late/sqrt(length(just_rnp$Proportion.late.nesters[just_rnp$File.name=="RNP_075" & just_rnp$Year=="2115"]))
CI.rnp075.late.left <- mean(just_rnp$Proportion.late.nesters[just_rnp$File.name=="RNP_075"& just_rnp$Year=="2115"])-error.rnp075.late
CI.rnp075.late.right <- mean(just_rnp$Proportion.late.nesters[just_rnp$File.name=="RNP_075"& just_rnp$Year=="2115"])+error.rnp075.late
CI.rnp075.late.left
## [1] 0.2372493
CI.rnp075.late.right
## [1] 0.2807792
just_rnp_late.aov = aov(just_rnp$Proportion.late.nesters[just_rnp$Year == "2115"] ~ RNP.f[just_rnp$Year == "2115"])
summary(just_rnp_late.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## RNP.f[just_rnp$Year == "2115"] 2 0.4174 0.20868 30.64 7.52e-12 ***
## Residuals 147 1.0011 0.00681
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(just_rnp_late.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_rnp$Proportion.late.nesters[just_rnp$Year == "2115"] ~ RNP.f[just_rnp$Year == "2115"])
##
## $`RNP.f[just_rnp$Year == "2115"]`
## diff lwr upr p adj
## 0.5-0.25 -0.04272319 -0.08180074 -0.003645642 0.0284273
## 0.75-0.25 -0.12696277 -0.16604032 -0.087885221 0.0000000
## 0.75-0.5 -0.08423958 -0.12331713 -0.045162031 0.0000030
plot(TukeyHSD(just_rnp_late.aov))
boxplot(just_rnp$Proportion.wild.born[just_rnp$Year=="2115"]~just_rnp$RNP[just_rnp$Year=="2115"], axes=F, xlab = "renesting probability", ylab = "proportion wild born")
axis(1, at=1:3, lab=c("0.25","0.5","0.75"))
axis(2)
summary(just_rnp$Proportion.wild.born[just_rnp$File.name=="RNP_025" & just_rnp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3279 0.4114 0.4390 0.4475 0.4912 0.5925
sd.rnp025.wild <- sd (just_rnp$Proportion.wild.born[just_rnp$File.name=="RNP_025" &
just_rnp$Year=="2115"])
sd.rnp025.wild
## [1] 0.05759269
error.rnp025.wild <- qt(0.975,
df=length(just_rnp$Proportion.wild.born[just_rnp$File.name=="RNP_025" & just_rnp$Year=="2115"])-1)*sd.rnp025.wild/sqrt(length(just_rnp$Proportion.wild.born[just_rnp$File.name=="RNP_025" & just_rnp$Year=="2115"]))
CI.rnp025.wild.left <- mean(just_rnp$Proportion.wild.born[just_rnp$File.name=="RNP_025"& just_rnp$Year=="2115"])-error.rnp025.wild
CI.rnp025.wild.right <- mean(just_rnp$Proportion.wild.born[just_rnp$File.name=="RNP_025"& just_rnp$Year=="2115"])+error.rnp025.wild
CI.rnp025.wild.left
## [1] 0.4311386
CI.rnp025.wild.right
## [1] 0.463874
summary(just_rnp$Proportion.wild.born[just_rnp$File.name=="default.w.CR0.25" & just_rnp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5739 0.6375 0.6511 0.6496 0.6653 0.7081
sd.rnp050.wild <- sd (just_rnp$Proportion.wild.born[just_rnp$File.name=="default.w.CR0.25" &
just_rnp$Year=="2115"])
sd.rnp050.wild
## [1] 0.0277858
error.rnp050.wild <- qt(0.975,
df=length(just_rnp$Proportion.wild.born[just_rnp$File.name=="default.w.CR0.25" & just_rnp$Year=="2115"])-1)*sd.rnp050.wild/sqrt(length(just_rnp$Proportion.wild.born[just_rnp$File.name=="default.w.CR0.25" & just_rnp$Year=="2115"]))
CI.rnp050.wild.left <- mean(just_rnp$Proportion.wild.born[just_rnp$File.name=="default.w.CR0.25"& just_rnp$Year=="2115"])-error.rnp050.wild
CI.rnp050.wild.right <- mean(just_rnp$Proportion.wild.born[just_rnp$File.name=="default.w.CR0.25"& just_rnp$Year=="2115"])+error.rnp050.wild
CI.rnp050.wild.left
## [1] 0.6417381
CI.rnp050.wild.right
## [1] 0.6575313
summary(just_rnp$Proportion.wild.born[just_rnp$File.name=="RNP_075" & just_rnp$Year=="2115"])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6902 0.7158 0.7307 0.7292 0.7403 0.7692
sd.rnp075.wild <- sd (just_rnp$Proportion.wild.born[just_rnp$File.name=="RNP_075" &
just_rnp$Year=="2115"])
sd.rnp075.wild
## [1] 0.01876157
error.rnp075.wild <- qt(0.975,
df=length(just_rnp$Proportion.wild.born[just_rnp$File.name=="RNP_075" & just_rnp$Year=="2115"])-1)*sd.rnp075.wild/sqrt(length(just_rnp$Proportion.wild.born[just_rnp$File.name=="RNP_075" & just_rnp$Year=="2115"]))
CI.rnp075.wild.left <- mean(just_rnp$Proportion.wild.born[just_rnp$File.name=="RNP_075"& just_rnp$Year=="2115"])-error.rnp075.wild
CI.rnp075.wild.right <- mean(just_rnp$Proportion.wild.born[just_rnp$File.name=="RNP_075"& just_rnp$Year=="2115"])+error.rnp075.wild
CI.rnp075.wild.left
## [1] 0.7238376
CI.rnp075.wild.right
## [1] 0.7345015
just_rnp_wild.aov = aov(just_rnp$Proportion.wild.born[just_rnp$Year == "2115"] ~ RNP.f[just_rnp$Year == "2115"])
summary(just_rnp_wild.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## RNP.f[just_rnp$Year == "2115"] 2 2.1086 1.0543 712.2 <2e-16 ***
## Residuals 147 0.2176 0.0015
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(just_rnp_wild.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = just_rnp$Proportion.wild.born[just_rnp$Year == "2115"] ~ RNP.f[just_rnp$Year == "2115"])
##
## $`RNP.f[just_rnp$Year == "2115"]`
## diff lwr upr p adj
## 0.5-0.25 0.20212841 0.18390903 0.22034779 0
## 0.75-0.25 0.28166327 0.26344389 0.29988264 0
## 0.75-0.5 0.07953486 0.06131548 0.09775423 0
plot(TukeyHSD(just_rnp_wild.aov))