Looking at the reliance on feelings manipulation first
No difference in trust for any of the tasks between conditions
t.test(hiT$personality_1, loT$personality_1)
##
## Welch Two Sample t-test
##
## data: hiT$personality_1 and loT$personality_1
## t = 1.1455, df = 380.46, p-value = 0.2527
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.242649 8.502319
## sample estimates:
## mean of x mean of y
## 61.95146 58.82162
t.test(hiT$joke_1, loT$joke_1)
##
## Welch Two Sample t-test
##
## data: hiT$joke_1 and loT$joke_1
## t = 0.3831, df = 388.66, p-value = 0.7019
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.699916 5.490733
## sample estimates:
## mean of x mean of y
## 58.87379 57.97838
t.test(hiT$car_1, loT$car_1)
##
## Welch Two Sample t-test
##
## data: hiT$car_1 and loT$car_1
## t = 1.2887, df = 381.96, p-value = 0.1983
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.071818 9.954263
## sample estimates:
## mean of x mean of y
## 49.18447 45.24324
t.test(hiT$movie_1, loT$movie_1)
##
## Welch Two Sample t-test
##
## data: hiT$movie_1 and loT$movie_1
## t = -0.19939, df = 382.79, p-value = 0.8421
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.423686 4.424945
## sample estimates:
## mean of x mean of y
## 46.20874 46.70811
t.test(hiT$psych_1, loT$psych_1)
##
## Welch Two Sample t-test
##
## data: hiT$psych_1 and loT$psych_1
## t = -0.83495, df = 384.46, p-value = 0.4043
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -7.355502 2.970459
## sample estimates:
## mean of x mean of y
## 51.79126 53.98378
t.test(hiT$trust, loT$trust)
##
## Welch Two Sample t-test
##
## data: hiT$trust and loT$trust
## t = 0.61364, df = 387.19, p-value = 0.5398
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.325052 4.434882
## sample estimates:
## mean of x mean of y
## 53.60194 52.54703
snowflake manipulation - no effect on trust nor on need for uniqueness
hiU<-subset(a, hiUNI!="NA")
loU<-subset(a, loUNI!="NA")
t.test(hiU$personality_1, loU$personality_1)
##
## Welch Two Sample t-test
##
## data: hiU$personality_1 and loU$personality_1
## t = 0.18005, df = 586.86, p-value = 0.8572
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.831489 4.604883
## sample estimates:
## mean of x mean of y
## 59.74086 59.35417
t.test(hiU$joke_1, loU$joke_1)
##
## Welch Two Sample t-test
##
## data: hiU$joke_1 and loU$joke_1
## t = -1.1834, df = 584.01, p-value = 0.2371
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.816171 1.442624
## sample estimates:
## mean of x mean of y
## 60.90698 63.09375
t.test(hiU$car_1, loU$car_1)
##
## Welch Two Sample t-test
##
## data: hiU$car_1 and loU$car_1
## t = 1.2448, df = 586.92, p-value = 0.2137
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.849894 8.253456
## sample estimates:
## mean of x mean of y
## 52.29900 49.09722
t.test(hiU$movie_1, loU$movie_1)
##
## Welch Two Sample t-test
##
## data: hiU$movie_1 and loU$movie_1
## t = -0.64079, df = 585.05, p-value = 0.5219
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.259755 2.671946
## sample estimates:
## mean of x mean of y
## 43.58804 44.88194
t.test(hiU$psych_1, loU$psych_1)
##
## Welch Two Sample t-test
##
## data: hiU$psych_1 and loU$psych_1
## t = 1.2459, df = 586.18, p-value = 0.2133
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.578435 7.055756
## sample estimates:
## mean of x mean of y
## 59.94352 57.20486
t.test(hiU$trust, loU$trust)
##
## Welch Two Sample t-test
##
## data: hiU$trust and loU$trust
## t = 0.41242, df = 586.95, p-value = 0.6802
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.141790 3.280374
## sample estimates:
## mean of x mean of y
## 55.29568 54.72639
t.test(hiU$nfu, loU$nfu)
##
## Welch Two Sample t-test
##
## data: hiU$nfu and loU$nfu
## t = -0.60527, df = 545.16, p-value = 0.5453
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.12903900 0.06824872
## sample estimates:
## mean of x mean of y
## 5.437137 5.467532