Create and plot models
Right pallidum
rpallidum <- r2star$Right.Pallidum
rpallidumModel <- gam(rpallidum ~ s(age,k=4) + sex, method="REML", data = r2star)
plotGAM(rpallidumModel,"age","sex")
## [1] "Working with a GAM Model"

rpall_pval <- as.data.frame(summary(rpallidumModel)$p.pv)
print(rpall_pval[2,])
## [1] 0.4182165
Left pallidum
lpallidum <- r2star$Left.Pallidum
lpallidumModel <- gam(lpallidum ~ s(age,k=4) + sex, method="REML", data = r2star)
plotGAM(lpallidumModel,"age","sex")
## [1] "Working with a GAM Model"

lpall_pval <- as.data.frame(summary(lpallidumModel)$p.pv)
print(lpall_pval[2,])
## [1] 0.06578102
Pallidum
pallidum <- (r2star$Left.Pallidum + r2star$Right.Pallidum)/2
pallidumModel <- gam(pallidum ~ s(age,k=4) + sex, method="REML", data = r2star)
pallidumGraph <- plotGAM(pallidumModel,"age","sex")
## [1] "Working with a GAM Model"
pallidumGraph <- pallidumGraph + ggtitle("Pallidum R2* vs Age") + labs(x="Age (years)", y="R2* (1/sec)",caption = "(p < 0.001)")
plot(pallidumGraph)

pall_pval <- as.data.frame(summary(pallidumModel)$p.pv)
print(pall_pval[2,])
## [1] 0.1720676
Right accumbens
raccumbens <- r2star$Right.Accumbens.Area
raccumbensModel <- gam(raccumbens ~ s(age,k=4) + sex, method="REML", data = r2star)
plotGAM(raccumbensModel,"age","sex")
## [1] "Working with a GAM Model"

racc_pval <- as.data.frame(summary(raccumbensModel)$p.pv)
print(racc_pval[2,])
## [1] 0.037054
Left accumbens
laccumbens <- r2star$Left.Accumbens.Area
laccumbensModel <- gam(laccumbens ~ s(age,k=4) + sex, method="REML", data = r2star)
plotGAM(laccumbensModel,"age","sex")
## [1] "Working with a GAM Model"

lacc_pval <- as.data.frame(summary(laccumbensModel)$p.pv)
print(lacc_pval[2,])
## [1] 0.02918618
Accumbens
accumbens <- (r2star$Left.Accumbens.Area + r2star$Right.Accumbens.Area)/2
accumbensModel <- gam(accumbens ~ s(age,k=4) + sex, method="REML", data = r2star)
plotGAM(accumbensModel,"age","sex")
## [1] "Working with a GAM Model"

accumbensGraph <- plotGAM(accumbensModel,"age","sex")
## [1] "Working with a GAM Model"
accumbensGraph <- accumbensGraph + ggtitle("Accumbens R2* vs Age") + labs(x="Age (years)", y="R2* (1/sec)",caption = "(p < 0.001)")
plot(accumbensGraph)

acc_pval <- as.data.frame(summary(accumbensModel)$p.pv)
print(acc_pval[2,])
## [1] 0.01310872
Right caudate
rcaudate <- r2star$Right.Caudate
rcaudateModel <- gam(rcaudate ~ s(age,k=4) + sex, method="REML", data = r2star)
plotGAM(rcaudateModel,"age","sex")
## [1] "Working with a GAM Model"

rcau_pval <- as.data.frame(summary(rcaudateModel)$p.pv)
print(rcau_pval[2,])
## [1] 0.8370361
Left caudate
lcaudate <- r2star$Left.Caudate
lcaudateModel <- gam(lcaudate ~ s(age,k=4) + sex, method="REML", data = r2star)
plotGAM(lcaudateModel,"age","sex")
## [1] "Working with a GAM Model"

lcau_pval <- as.data.frame(summary(lcaudateModel)$p.pv)
print(lcau_pval[2,])
## [1] 0.4549892
Caudate
caudate <- (r2star$Left.Caudate + r2star$Right.Caudate)/2
caudateModel <- gam(caudate ~ s(age,k=4) + sex, method="REML", data = r2star)
caudate <- (r2star$Left.Caudate + r2star$Right.Caudate)/2
caudateModel <- gam(caudate ~ s(age,k=4) + sex, method="REML", data = r2star)
caudateGraph <- plotGAM(caudateModel,"age","sex")
## [1] "Working with a GAM Model"
caudateGraph <- caudateGraph + ggtitle("Caudate R2* vs Age") + labs(x="Age (years)", y="R2* (1/sec)",caption = "(p < 0.001)")
plot(caudateGraph)

cau_pval <- as.data.frame(summary(caudateModel)$p.pv)
print(cau_pval[2,])
## [1] 0.7562452
Right putamen
rputamen <- r2star$Right.Putamen
rputamenModel <- gam(rputamen ~ s(age,k=4) + sex, method="REML", data = r2star)
plotGAM(rputamenModel,"age","sex")
## [1] "Working with a GAM Model"

rput_pval <- as.data.frame(summary(rputamenModel)$p.pv)
print(rput_pval[2,])
## [1] 0.9668501
Left putamen
lputamen <- r2star$Left.Putamen
lputamenModel <- gam(lputamen ~ s(age,k=4) + sex, method="REML", data = r2star)
plotGAM(lputamenModel,"age","sex")
## [1] "Working with a GAM Model"

lput_pval <- as.data.frame(summary(lputamenModel)$p.pv)
print(lput_pval[2,])
## [1] 0.1014401
Putamen
putamen <- (r2star$Left.Putamen + r2star$Right.Putamen)/2
putamenModel <- gam(putamen ~ s(age,k=4) + sex, method="REML", data = r2star)
putamenGraph <- plotGAM(putamenModel,"age","sex")
## [1] "Working with a GAM Model"
putamenGraph <- putamenGraph + ggtitle("Putamen R2* vs Age") + labs(x="Age (years)", y="R2* (1/sec)",caption = "(p < 0.001)")
plot(putamenGraph)

put_pval <- as.data.frame(summary(putamenModel)$p.pv)
print(put_pval[2,])
## [1] 0.362697
P values
pvalues = list(rpall_pval,lpall_pval,pall_pval,lacc_pval,racc_pval,acc_pval,rcau_pval,lcau_pval,cau_pval,lput_pval,rput_pval,put_pval)
pvals <- Reduce(merge, lapply(pvalues, function(x) data.frame(x, rn = row.names(x))))
names(pvals) <- c("region","rpall_pval","lpall_pval","pall_pval","lacc_pval","racc_pval","acc_pval","rcau_pval","lcau_pval","cau_pval","lput_pval","rput_pval","put_pval")
print(pvals[2,])
## region rpall_pval lpall_pval pall_pval lacc_pval racc_pval acc_pval
## 2 sex.L 0.4182165 0.06578102 0.1720676 0.02918618 0.037054 0.01310872
## rcau_pval lcau_pval cau_pval lput_pval rput_pval put_pval
## 2 0.8370361 0.4549892 0.7562452 0.1014401 0.9668501 0.362697