Striatal Models
Pallidum
pallidumAcc <- gam(pallidum ~ s(age) + sex + accuracy, data=r2star, method="REML")
visreg(pallidumAcc,"accuracy")

pall_acc_pval <- as.data.frame(summary(pallidumAcc)$p.table[3,4])
names(pall_acc_pval) <- "pallidum_acc_pval"
print(pall_acc_pval)
## pallidum_acc_pval
## 1 0.2385601
pallidumEff <- gam(pallidum ~ s(age) + sex + efficiency, data=r2star, method="REML")
visreg(pallidumEff,"efficiency")

pall_eff_pval <- as.data.frame(summary(pallidumEff)$p.table[3,4])
names(pall_eff_pval) <- "pallidum_eff_pval"
print(pall_eff_pval)
## pallidum_eff_pval
## 1 0.1213092
pallidumSpeed <- gam(pallidum ~ s(age) + sex + speed, data=r2star, method="REML")
visreg(pallidumSpeed,"speed")

pall_speed_pval <- as.data.frame(summary(pallidumSpeed)$p.table[3,4])
names(pall_speed_pval) <- "pallidum_speed_pval"
print(pall_speed_pval)
## pallidum_speed_pval
## 1 0.1889191
Accumbens
accumbensAcc <- gam(accumbens ~ s(age) + sex + accuracy, data=r2star, method="REML")
visreg(accumbensAcc,"accuracy")

acc_acc_pval <- as.data.frame(summary(accumbensAcc)$p.table[3,4])
names(acc_acc_pval) <- "accumbens_acc_pval"
print(acc_acc_pval)
## accumbens_acc_pval
## 1 0.8317156
accumbensEff <- gam(accumbens ~ s(age) + sex + efficiency, data=r2star, method="REML")
visreg(accumbensEff,"efficiency")

acc_eff_pval <- as.data.frame(summary(accumbensEff)$p.table[3,4])
names(acc_eff_pval) <- "accumbens_eff_pval"
print(acc_eff_pval)
## accumbens_eff_pval
## 1 0.895044
accumbensSpeed <- gam(accumbens ~ s(age) + sex + speed, data=r2star, method="REML")
visreg(accumbensSpeed,"speed")

acc_speed_pval <- as.data.frame(summary(accumbensSpeed)$p.table[3,4])
names(acc_speed_pval) <- "accumbens_speed_pval"
print(acc_speed_pval)
## accumbens_speed_pval
## 1 0.6954426
Caudate
caudateAcc <- gam(caudate ~ s(age) + sex + accuracy, data=r2star, method="REML")
visreg(caudateAcc,"accuracy")

cau_acc_pval <- as.data.frame(summary(caudateAcc)$p.table[3,4])
names(cau_acc_pval) <- "caudate_acc_pval"
print(cau_acc_pval)
## caudate_acc_pval
## 1 0.006608071
caudateEff <- gam(caudate ~ s(age) + sex + efficiency, data=r2star, method="REML")
visreg(caudateEff,"efficiency")

cau_eff_pval <- as.data.frame(summary(caudateEff)$p.table[3,4])
names(cau_eff_pval) <- "caudate_eff_pval"
print(cau_eff_pval)
## caudate_eff_pval
## 1 0.02509784
caudateSpeed <- gam(caudate ~ s(age) + sex + speed, data=r2star, method="REML")
visreg(caudateSpeed,"speed")

cau_speed_pval <- as.data.frame(summary(caudateSpeed)$p.table[3,4])
names(cau_speed_pval) <- "caudate_speed_pval"
print(cau_speed_pval)
## caudate_speed_pval
## 1 0.5452894
Putamen
putamenAcc <- gam(putamen ~ s(age) + sex + accuracy, data=r2star, method="REML")
visreg(putamenAcc,"accuracy")

put_acc_pval <- as.data.frame(summary(putamenAcc)$p.table[3,4])
names(put_acc_pval) <- "putamen_acc_pval"
print(put_acc_pval)
## putamen_acc_pval
## 1 0.1147318
putamenEff <- gam(putamen ~ s(age) + sex + efficiency, data=r2star, method="REML")
visreg(putamenEff,"efficiency")

put_eff_pval <- as.data.frame(summary(putamenEff)$p.table[3,4])
names(put_eff_pval) <- "putamen_eff_pval"
print(put_eff_pval)
## putamen_eff_pval
## 1 0.03727838
putamenSpeed <- gam(putamen ~ s(age) + sex + speed, data=r2star, method="REML")
visreg(putamenSpeed,"speed")

put_speed_pval <- as.data.frame(summary(putamenSpeed)$p.table[3,4])
names(put_speed_pval) <- "putamen_speed_pval"
print(put_speed_pval)
## putamen_speed_pval
## 1 0.08635342
P values
pvalues = list(pall_acc_pval, pall_eff_pval, pall_speed_pval, acc_acc_pval, acc_eff_pval, acc_speed_pval, cau_acc_pval, cau_eff_pval, cau_speed_pval, put_acc_pval, put_eff_pval, put_speed_pval)
pvals <- Reduce(merge, lapply(pvalues, function(x) data.frame(x, rn = row.names(x))))
print(pvals)
## rn pallidum_acc_pval pallidum_eff_pval pallidum_speed_pval
## 1 1 0.2385601 0.1213092 0.1889191
## accumbens_acc_pval accumbens_eff_pval accumbens_speed_pval
## 1 0.8317156 0.895044 0.6954426
## caudate_acc_pval caudate_eff_pval caudate_speed_pval putamen_acc_pval
## 1 0.006608071 0.02509784 0.5452894 0.1147318
## putamen_eff_pval putamen_speed_pval
## 1 0.03727838 0.08635342