El siguiente laboratorio encuentra ciertas probabilidades, utiliza el DataSet de la demanda de bicicletas en EEUU.
data <- read.csv("hour.csv",na.strings = FALSE,strip.white = TRUE)
data <- dplyr::select(data,season,temp,hum,cnt)
Crear las matrices para cada una de las estaciones
spring <- filter(data,season==1)
s1 <- kde2d(x=spring$temp,y=spring$hum,n=100)
s1$z <-s1$z/sum(s1$z)
s1_ <- kde2d(x=spring$temp,y=spring$cnt,n=100)
s1_$z <- s1_$z/sum(s1_$z)
rm(spring)
summer <- filter(data,season==2)
s2 <- kde2d(x=summer$temp,y=summer$hum,n=100)
s2$z <- s2$z/sum(s2$z)
s2_ <- kde2d(x=summer$temp,y=summer$cnt,n=100)
s2_$z <- s2_$z/sum(s2_$z)
rm(summer)
fall <- filter(data,season==3)
s3 <- kde2d(x=fall$temp,y=fall$hum,n=100)
s3$z <- s3$z/sum(s3$z)
s3_ <- kde2d(x=fall$temp,y=fall$cnt,n=100)
s3_$z <- s3_$z/sum(s3_$z)
rm(fall)
winter <- filter(data,season==4)
s4 <- kde2d(x=winter$temp,y=winter$hum,n=100)
s4$z <- s4$z/sum(s4$z)
s4_ <- kde2d(x=winter$temp,y=winter$cnt,n=100)
s4_$z <- s4_$z/sum(s4_$z)
rm(winter)
Entregables
- P(x1>0.7 | x2 = 0.6 & s1)
b <- (s1$y >= 0.6 & s1$y <= 0.7)
a <- s1$x > 0.7
sum(s1$z[a,b])
[1] 2.913279e-07
R// P(x1>0.7 | x2 = 0.6 & s1) = 2.913279e-07
- P(x1>0.7 | x2 = 0.6 & s2)
b <- (s2$y >= 0.6 & s2$y <= 0.7)
a <- s2$x > 0.7
sum(s2$z[a,b])
[1] 0.02302887
R// P(x1>0.7 | x2 = 0.6 & s2) = 0.02302887
- P(x1>0.7 | x2 = 0.6 & s3)
b <- (s3$y >= 0.6 & s3$y <= 0.7)
a <- s3$x > 0.7
sum(s3$z[a,b])
[1] 0.09653756
R// P(x1>0.7 | x2 = 0.6 & s3) = 0.09653756
- P(x1>0.7 | x2 = 0.6 & s4)
b <- (s4$y >= 0.6 & s4$y <= 0.7)
a <- s4$x > 0.7
sum(s4$z[a,b])
[1] 0.001974558
R// P(x1>0.7 | x2 = 0.6 & s4) = 0.001974558
- P(x3>0.7 | x1 = 0.6 & s2)
a <- (s2_$y >142)
b <- (s2_$x >= 0.6 & s2_$x <= 0.7)
sum(s2_$z[a,b])
[1] 0.05132424
R// P(x3>0.7 | x1 = 0.6 & s2) = 0.05132424
- P(x3>0.7 | x1 = 0.6 & s4)
a <- (s4_$y >142)
b <- (s4_$x >= 0.6 & s4_$x <= 0.7)
sum(s4_$z[a,b])
[1] 0.01547928
R// P(x3>0.7 | x1 = 0.6 & s4) = 0.01547928
- Si f(x1,x2) calcular los siguientes incisos para cada si
a)E(x1)
Es1<-sum(s1$x*s1$z)
Es2<-sum(s2$x*s2$z)
Es3<-sum(s3$x*s3$z)
Es4<-sum(s4$x*s4$z)
Es1
[1] 0.2991682
Es2
[1] 0.5459477
Es3
[1] 0.7067466
Es4
[1] 0.4224813
R// E(x1) para s1 = 0.2991682 E(x1) para s2 = 0.5459477 E(x1) para s3 = 0.7067466 E(x1) para s4 = 0.4224813
- E(x2)
Es1<-sum(s1$y*s1$z)
Es2<-sum(s2$y*s2$z)
Es3<-sum(s3$y*s3$z)
Es4<-sum(s4$y*s4$z)
Es1
[1] 0.3988117
Es2
[1] 0.575636
Es3
[1] 0.602689
Es4
[1] 0.5427166
R// E(x2) para s1 = 0.3988117 E(x2) para s2 = 0.575636 E(x2) para s3 = 0.602689 E(x2) para s4 = 0.5427166
- V(x1)
Vs1 <- (sum((s1$x*s1$x)*s1$z))-(sum((s1$x*s1$z)*(s1$x*s1$z)))
Vs2 <- (sum((s2$x*s2$x)*s2$z))-(sum((s2$x*s2$z)*(s2$x*s2$z)))
Vs3 <- (sum((s3$x*s3$x)*s3$z))-(sum((s3$x*s3$z)*(s3$x*s3$z)))
Vs4 <- (sum((s4$x*s4$x)*s4$z))-(sum((s4$x*s4$z)*(s4$x*s4$z)))
Vs1
[1] 0.1037561
Vs2
[1] 0.3179421
Vs3
[1] 0.5083733
Vs4
[1] 0.1938805
R// V(x1) para s1 = 0.1037561 V(x1) para s2 = 0.3179421 V(x1) para s3 = 0.5083733 V(x1) para s4 = 0.1938805
- V(x2)
Vs1 <- (sum((s1$y*s1$y)*s1$z))-(sum((s1$y*s1$z)*(s1$y*s1$z)))
Vs2 <- (sum((s2$y*s2$y)*s2$z))-(sum((s2$y*s2$z)*(s2$y*s2$z)))
Vs3 <- (sum((s3$y*s3$y)*s3$z))-(sum((s3$y*s3$z)*(s3$y*s3$z)))
Vs4 <- (sum((s4$y*s4$y)*s4$z))-(sum((s4$y*s4$z)*(s4$y*s4$z)))
Vs1
[1] 0.1881472
Vs2
[1] 0.3544194
Vs3
[1] 0.3797295
Vs4
[1] 0.3227969
R// V(x2) para s1 = 0.1881472 V(x2) para s2 = 0.3544194 V(x2) para s3 = 0.3797295 V(x2) para s4 = 0.3227969
- Si f(x1,x3) calcular los siguientes incisos para cada si
a)E(x1)
Es1<-sum(s1_$x*s1_$z)
Es2<-sum(s2_$x*s2_$z)
Es3<-sum(s3_$x*s3_$z)
Es4<-sum(s4_$x*s4_$z)
Es1
[1] 0.3033282
Es2
[1] 0.5512044
Es3
[1] 0.7110093
Es4
[1] 0.427175
R// E(x1) para s1 = 0.3033282 E(x1) para s2 = 0.5512044 E(x1) para s3 = 0.7110093 E(x1) para s4 = 0.427175
- E(x2)
Es1<-sum(s1_$y*s1_$z)
Es2<-sum(s2_$y*s2_$z)
Es3<-sum(s3_$y*s3_$z)
Es4<-sum(s4_$y*s4_$z)
Es1
[1] 324.8036
Es2
[1] 480.4761
Es3
[1] 522.0728
Es4
[1] 448.4372
R// E(x2) para s1 = 324.8036 E(x2) para s2 = 480.4761 E(x2) para s3 = 522.0728 E(x2) para s4 = 448.4372
- V(x1)
Vs1 <- (sum((s1_$x*s1_$x)*s1_$z))-(sum((s1_$x*s1_$z)*(s1_$x*s1_$z)))
Vs2 <- (sum((s2_$x*s2_$x)*s2_$z))-(sum((s2_$x*s2_$z)*(s2_$x*s2_$z)))
Vs3 <- (sum((s3_$x*s3_$x)*s3_$z))-(sum((s3_$x*s3_$z)*(s3_$x*s3_$z)))
Vs4 <- (sum((s4_$x*s4_$x)*s4_$z))-(sum((s4_$x*s4_$z)*(s4_$x*s4_$z)))
Vs1
[1] 0.1062909
Vs2
[1] 0.3234436
Vs3
[1] 0.5144196
Vs4
[1] 0.1976867
R// V(x1) para s1 = 0.1062909 V(x1) para s2 = 0.3234436 V(x1) para s3 = 0.5144196 V(x1) para s4 = 0.1976867
- V(x2)
Vs1 <- (sum((s1_$y*s1_$y)*s1_$z))-(sum((s1_$y*s1_$z)*(s1_$y*s1_$z)))
Vs2 <- (sum((s2_$y*s2_$y)*s2_$z))-(sum((s2_$y*s2_$z)*(s2_$y*s2_$z)))
Vs3 <- (sum((s3_$y*s3_$y)*s3_$z))-(sum((s3_$y*s3_$z)*(s3_$y*s3_$z)))
Vs4 <- (sum((s4_$y*s4_$y)*s4_$z))-(sum((s4_$y*s4_$z)*(s4_$y*s4_$z)))
Vs1
[1] 124160.7
Vs2
[1] 260396.7
Vs3
[1] 294939.3
Vs4
[1] 238082.1
R// V(x2) para s1 = 124160.7 V(x2) para s2 = 260396.7 V(x2) para s3 = 294939.3 V(x2) para s4 = 238082.1
LS0tDQp0aXRsZTogIkxhYm9yYXRvcmlvIDIiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpFbCBzaWd1aWVudGUgbGFib3JhdG9yaW8gZW5jdWVudHJhIGNpZXJ0YXMgcHJvYmFiaWxpZGFkZXMsIHV0aWxpemEgZWwgRGF0YVNldCBkZSBsYSBkZW1hbmRhIGRlIGJpY2ljbGV0YXMgZW4gRUVVVS4NCg0KYGBge3IsZWNobz1GQUxTRSx3YXJuaW5nPUZBTFNFfQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoTUFTUykNCmxpYnJhcnkoZXhwbSkNCmBgYA0KDQpgYGB7cn0NCmRhdGEgPC0gcmVhZC5jc3YoImhvdXIuY3N2IixuYS5zdHJpbmdzID0gRkFMU0Usc3RyaXAud2hpdGUgPSBUUlVFKQ0KZGF0YSA8LSBkcGx5cjo6c2VsZWN0KGRhdGEsc2Vhc29uLHRlbXAsaHVtLGNudCkNCmBgYA0KDQpDcmVhciBsYXMgbWF0cmljZXMgcGFyYSBjYWRhIHVuYSBkZSBsYXMgZXN0YWNpb25lcw0KDQpgYGB7cn0NCnNwcmluZyA8LSBmaWx0ZXIoZGF0YSxzZWFzb249PTEpDQpzMSA8LSBrZGUyZCh4PXNwcmluZyR0ZW1wLHk9c3ByaW5nJGh1bSxuPTEwMCkNCnMxJHogPC1zMSR6L3N1bShzMSR6KQ0KDQpzMV8gPC0ga2RlMmQoeD1zcHJpbmckdGVtcCx5PXNwcmluZyRjbnQsbj0xMDApDQpzMV8keiA8LSBzMV8kei9zdW0oczFfJHopDQpybShzcHJpbmcpDQoNCnN1bW1lciA8LSBmaWx0ZXIoZGF0YSxzZWFzb249PTIpDQpzMiA8LSBrZGUyZCh4PXN1bW1lciR0ZW1wLHk9c3VtbWVyJGh1bSxuPTEwMCkNCnMyJHogPC0gczIkei9zdW0oczIkeikNCg0KczJfIDwtIGtkZTJkKHg9c3VtbWVyJHRlbXAseT1zdW1tZXIkY250LG49MTAwKQ0KczJfJHogPC0gczJfJHovc3VtKHMyXyR6KQ0Kcm0oc3VtbWVyKQ0KDQpmYWxsIDwtIGZpbHRlcihkYXRhLHNlYXNvbj09MykNCnMzIDwtIGtkZTJkKHg9ZmFsbCR0ZW1wLHk9ZmFsbCRodW0sbj0xMDApDQpzMyR6IDwtIHMzJHovc3VtKHMzJHopDQoNCnMzXyA8LSBrZGUyZCh4PWZhbGwkdGVtcCx5PWZhbGwkY250LG49MTAwKQ0KczNfJHogPC0gczNfJHovc3VtKHMzXyR6KQ0Kcm0oZmFsbCkNCg0Kd2ludGVyIDwtIGZpbHRlcihkYXRhLHNlYXNvbj09NCkNCnM0IDwtIGtkZTJkKHg9d2ludGVyJHRlbXAseT13aW50ZXIkaHVtLG49MTAwKQ0KczQkeiA8LSBzNCR6L3N1bShzNCR6KQ0KDQpzNF8gPC0ga2RlMmQoeD13aW50ZXIkdGVtcCx5PXdpbnRlciRjbnQsbj0xMDApDQpzNF8keiA8LSBzNF8kei9zdW0oczRfJHopDQpybSh3aW50ZXIpDQoNCmBgYA0KDQoqRW50cmVnYWJsZXMqDQoNCjEuIFAoeDE+MC43IHwgeDIgPSAwLjYgJiBzMSkgDQoNCmBgYHtyfQ0KYiA8LSAoczEkeSA+PSAwLjYgJiBzMSR5IDw9IDAuNykNCmEgPC0gczEkeCA+IDAuNw0Kc3VtKHMxJHpbYSxiXSkNCmBgYA0KUi8vIFAoeDE+MC43IHwgeDIgPSAwLjYgJiBzMSkgPSAyLjkxMzI3OWUtMDcNCg0KMi4gUCh4MT4wLjcgfCB4MiA9IDAuNiAmIHMyKQ0KYGBge3J9DQpiIDwtIChzMiR5ID49IDAuNiAmIHMyJHkgPD0gMC43KQ0KYSA8LSBzMiR4ID4gMC43DQpzdW0oczIkelthLGJdKQ0KYGBgDQpSLy8gUCh4MT4wLjcgfCB4MiA9IDAuNiAmIHMyKSA9IDAuMDIzMDI4ODcNCg0KMy4gUCh4MT4wLjcgfCB4MiA9IDAuNiAmIHMzKQ0KYGBge3J9DQpiIDwtIChzMyR5ID49IDAuNiAmIHMzJHkgPD0gMC43KQ0KYSA8LSBzMyR4ID4gMC43DQpzdW0oczMkelthLGJdKQ0KYGBgDQpSLy8gUCh4MT4wLjcgfCB4MiA9IDAuNiAmIHMzKSA9IDAuMDk2NTM3NTYNCg0KNC4gUCh4MT4wLjcgfCB4MiA9IDAuNiAmIHM0KQ0KYGBge3J9DQpiIDwtIChzNCR5ID49IDAuNiAmIHM0JHkgPD0gMC43KQ0KYSA8LSBzNCR4ID4gMC43DQpzdW0oczQkelthLGJdKQ0KYGBgDQpSLy8gUCh4MT4wLjcgfCB4MiA9IDAuNiAmIHM0KSA9IDAuMDAxOTc0NTU4DQoNCjUuIFAoeDM+MC43IHwgeDEgPSAwLjYgJiBzMikNCg0KYGBge3J9DQphIDwtIChzMl8keSA+MTQyKQ0KYiA8LSAoczJfJHggPj0gMC42ICYgczJfJHggPD0gMC43KQ0Kc3VtKHMyXyR6W2EsYl0pDQpgYGANClIvLyBQKHgzPjAuNyB8IHgxID0gMC42ICYgczIpID0gMC4wNTEzMjQyNA0KDQo2LiBQKHgzPjAuNyB8IHgxID0gMC42ICYgczQpDQpgYGB7cn0NCmEgPC0gKHM0XyR5ID4xNDIpDQpiIDwtIChzNF8keCA+PSAwLjYgJiBzNF8keCA8PSAwLjcpDQpzdW0oczRfJHpbYSxiXSkNCmBgYA0KUi8vIFAoeDM+MC43IHwgeDEgPSAwLjYgJiBzNCkgPSAwLjAxNTQ3OTI4DQoNCjcuIFNpIGYoeDEseDIpIGNhbGN1bGFyIGxvcyBzaWd1aWVudGVzIGluY2lzb3MgcGFyYSBjYWRhIHNpDQoNCiAgYSlFKHgxKSANCiAgDQpgYGB7cn0NCkVzMTwtc3VtKHMxJHgqczEkeikNCkVzMjwtc3VtKHMyJHgqczIkeikNCkVzMzwtc3VtKHMzJHgqczMkeikNCkVzNDwtc3VtKHM0JHgqczQkeikNCkVzMQ0KRXMyDQpFczMNCkVzNA0KYGBgDQpSLy8gRSh4MSkgcGFyYSBzMSA9IDAuMjk5MTY4Mg0KICAgIEUoeDEpIHBhcmEgczIgPSAwLjU0NTk0NzcNCiAgICBFKHgxKSBwYXJhIHMzID0gMC43MDY3NDY2DQogICAgRSh4MSkgcGFyYSBzNCA9IDAuNDIyNDgxMw0KICAgIA0KICBiKSBFKHgyKQ0KYGBge3J9DQpFczE8LXN1bShzMSR5KnMxJHopDQpFczI8LXN1bShzMiR5KnMyJHopDQpFczM8LXN1bShzMyR5KnMzJHopDQpFczQ8LXN1bShzNCR5KnM0JHopDQpFczENCkVzMg0KRXMzDQpFczQNCmBgYA0KUi8vIEUoeDIpIHBhcmEgczEgPSAwLjM5ODgxMTcNCiAgICBFKHgyKSBwYXJhIHMyID0gMC41NzU2MzYNCiAgICBFKHgyKSBwYXJhIHMzID0gMC42MDI2ODkNCiAgICBFKHgyKSBwYXJhIHM0ID0gMC41NDI3MTY2DQoNCiAgYykgVih4MSkNCmBgYHtyfQ0KVnMxIDwtIChzdW0oKHMxJHgqczEkeCkqczEkeikpLShzdW0oKHMxJHgqczEkeikqKHMxJHgqczEkeikpKQ0KVnMyIDwtIChzdW0oKHMyJHgqczIkeCkqczIkeikpLShzdW0oKHMyJHgqczIkeikqKHMyJHgqczIkeikpKQ0KVnMzIDwtIChzdW0oKHMzJHgqczMkeCkqczMkeikpLShzdW0oKHMzJHgqczMkeikqKHMzJHgqczMkeikpKQ0KVnM0IDwtIChzdW0oKHM0JHgqczQkeCkqczQkeikpLShzdW0oKHM0JHgqczQkeikqKHM0JHgqczQkeikpKQ0KVnMxDQpWczINClZzMw0KVnM0DQpgYGANClIvLyBWKHgxKSBwYXJhIHMxID0gMC4xMDM3NTYxDQogICAgVih4MSkgcGFyYSBzMiA9IDAuMzE3OTQyMQ0KICAgIFYoeDEpIHBhcmEgczMgPSAwLjUwODM3MzMNCiAgICBWKHgxKSBwYXJhIHM0ID0gMC4xOTM4ODA1DQogICAgDQogIGQpIFYoeDIpDQogIA0KYGBge3J9DQpWczEgPC0gKHN1bSgoczEkeSpzMSR5KSpzMSR6KSktKHN1bSgoczEkeSpzMSR6KSooczEkeSpzMSR6KSkpDQpWczIgPC0gKHN1bSgoczIkeSpzMiR5KSpzMiR6KSktKHN1bSgoczIkeSpzMiR6KSooczIkeSpzMiR6KSkpDQpWczMgPC0gKHN1bSgoczMkeSpzMyR5KSpzMyR6KSktKHN1bSgoczMkeSpzMyR6KSooczMkeSpzMyR6KSkpDQpWczQgPC0gKHN1bSgoczQkeSpzNCR5KSpzNCR6KSktKHN1bSgoczQkeSpzNCR6KSooczQkeSpzNCR6KSkpDQpWczENClZzMg0KVnMzDQpWczQNCmBgYA0KUi8vIFYoeDIpIHBhcmEgczEgPSAwLjE4ODE0NzINCiAgICBWKHgyKSBwYXJhIHMyID0gMC4zNTQ0MTk0DQogICAgVih4MikgcGFyYSBzMyA9IDAuMzc5NzI5NQ0KICAgIFYoeDIpIHBhcmEgczQgPSAwLjMyMjc5NjkNCiAgDQo4LiBTaSBmKHgxLHgzKSBjYWxjdWxhciBsb3Mgc2lndWllbnRlcyBpbmNpc29zIHBhcmEgY2FkYSBzaQ0KDQogIGEpRSh4MSkgDQogIA0KYGBge3J9DQpFczE8LXN1bShzMV8keCpzMV8keikNCkVzMjwtc3VtKHMyXyR4KnMyXyR6KQ0KRXMzPC1zdW0oczNfJHgqczNfJHopDQpFczQ8LXN1bShzNF8keCpzNF8keikNCkVzMQ0KRXMyDQpFczMNCkVzNA0KYGBgDQpSLy8gRSh4MSkgcGFyYSBzMSA9IDAuMzAzMzI4Mg0KICAgIEUoeDEpIHBhcmEgczIgPSAwLjU1MTIwNDQNCiAgICBFKHgxKSBwYXJhIHMzID0gMC43MTEwMDkzDQogICAgRSh4MSkgcGFyYSBzNCA9IDAuNDI3MTc1DQogICAgDQogIGIpIEUoeDIpDQpgYGB7cn0NCkVzMTwtc3VtKHMxXyR5KnMxXyR6KQ0KRXMyPC1zdW0oczJfJHkqczJfJHopDQpFczM8LXN1bShzM18keSpzM18keikNCkVzNDwtc3VtKHM0XyR5KnM0XyR6KQ0KRXMxDQpFczINCkVzMw0KRXM0DQpgYGANClIvLyBFKHgyKSBwYXJhIHMxID0gMzI0LjgwMzYNCiAgICBFKHgyKSBwYXJhIHMyID0gNDgwLjQ3NjENCiAgICBFKHgyKSBwYXJhIHMzID0gNTIyLjA3MjgNCiAgICBFKHgyKSBwYXJhIHM0ID0gNDQ4LjQzNzINCg0KICBjKSBWKHgxKQ0KYGBge3J9DQpWczEgPC0gKHN1bSgoczFfJHgqczFfJHgpKnMxXyR6KSktKHN1bSgoczFfJHgqczFfJHopKihzMV8keCpzMV8keikpKQ0KVnMyIDwtIChzdW0oKHMyXyR4KnMyXyR4KSpzMl8keikpLShzdW0oKHMyXyR4KnMyXyR6KSooczJfJHgqczJfJHopKSkNClZzMyA8LSAoc3VtKChzM18keCpzM18keCkqczNfJHopKS0oc3VtKChzM18keCpzM18keikqKHMzXyR4KnMzXyR6KSkpDQpWczQgPC0gKHN1bSgoczRfJHgqczRfJHgpKnM0XyR6KSktKHN1bSgoczRfJHgqczRfJHopKihzNF8keCpzNF8keikpKQ0KVnMxDQpWczINClZzMw0KVnM0DQpgYGANClIvLyBWKHgxKSBwYXJhIHMxID0gMC4xMDYyOTA5DQogICAgVih4MSkgcGFyYSBzMiA9IDAuMzIzNDQzNg0KICAgIFYoeDEpIHBhcmEgczMgPSAwLjUxNDQxOTYNCiAgICBWKHgxKSBwYXJhIHM0ID0gMC4xOTc2ODY3DQogICAgDQogIGQpIFYoeDIpDQogIA0KYGBge3J9DQpWczEgPC0gKHN1bSgoczFfJHkqczFfJHkpKnMxXyR6KSktKHN1bSgoczFfJHkqczFfJHopKihzMV8keSpzMV8keikpKQ0KVnMyIDwtIChzdW0oKHMyXyR5KnMyXyR5KSpzMl8keikpLShzdW0oKHMyXyR5KnMyXyR6KSooczJfJHkqczJfJHopKSkNClZzMyA8LSAoc3VtKChzM18keSpzM18keSkqczNfJHopKS0oc3VtKChzM18keSpzM18keikqKHMzXyR5KnMzXyR6KSkpDQpWczQgPC0gKHN1bSgoczRfJHkqczRfJHkpKnM0XyR6KSktKHN1bSgoczRfJHkqczRfJHopKihzNF8keSpzNF8keikpKQ0KVnMxDQpWczINClZzMw0KVnM0DQpgYGANClIvLyBWKHgyKSBwYXJhIHMxID0gMTI0MTYwLjcNCiAgICBWKHgyKSBwYXJhIHMyID0gMjYwMzk2LjcNCiAgICBWKHgyKSBwYXJhIHMzID0gMjk0OTM5LjMNCiAgICBWKHgyKSBwYXJhIHM0ID0gMjM4MDgyLjENCg0KDQog