Paper is Economic Costs of Conflict: A Case Study of the Basque Country, AER (2003)
The dataset contains information from 1955-1997 on 17 Spanish regions. It was used by Abadie and Gardeazabal (2003) to study the effect of terrorism in the Basque Country on GDP.
The data set is full described here
Results of 2003 paper Effect reaches a max of \(-12 \%\), decreasing in the 1990s.
Our \(ARIMA(0,1,1)\) model matches these findings. See Figure “Treatment effect \(ARIMA(0,1,1)\) for \(log(DGP)\)”.
Note 1 BIC and AIC both select \(ARIMA(0,1,1)\). Results of this test in the document. Test is “auto.arima”.
Note 2 Synth control needs \(T \rightarrow \infty\) as well as time series data with small variance.
Plot GDP for the treatment unit, 1955 - 1997.
Select data pre-1975 to fit an AR-type model. Plotting pre-1975 GDP and first differences.
## [1] 3.853185 3.945658 4.033562 4.023422 4.013782 4.285918 4.574336
## [8] 4.898957 5.197015 5.338903 5.465153 5.545916 5.614896 5.852185
## [15] 6.081405 6.170094 6.283633 6.555555 6.810769 7.105184 7.377892
## attr(,"tsp")
## [1] 2 22 1
## [1] 3.853185 3.945658 4.033562 4.023422 4.013782 4.285918 4.574336
## [8] 4.898957 5.197015 5.338903 5.465153 5.545916 5.614896 5.852185
## [15] 6.081405 6.170094 6.283633 6.555555 6.810769 7.105184
RESULTS: log(GDP) seems be to ARIMA(0,1,1)
## Series: log(ts_55_75)
## ARIMA(0,1,1) with drift
##
## Coefficients:
## ma1 drift
## 0.7208 0.0323
## s.e. 0.1649 0.0062
##
## sigma^2 estimated as 0.0002988: log likelihood=53.47
## AIC=-100.94 AICc=-99.44 BIC=-97.95
##
## Training set error measures:
## ME RMSE MAE MPE MAPE
## Training set 0.0001193987 0.01600391 0.01168671 -0.001983195 0.7343174
## MASE ACF1
## Training set 0.3544545 0.03806803
Coefficients and in sample error measures:
summary(fit1)
##
## Call:
## arima(x = log(ts_55_75), order = c(0, 1, 1))
##
## Coefficients:
## ma1
## 0.8580
## s.e. 0.1357
##
## sigma^2 estimated as 0.0005912: log likelihood = 45.29, aic = -86.58
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.01683819 0.02373116 0.01765185 1.014544 1.072991 0.5353754
## ACF1
## Training set -0.1397066
par(mfrow=c(1,2))
acf(resid(fit1),
main="ACF for ARIMA(0,1,1) log(GDP)")
pacf(resid(fit1),
main="PACF for ARIMA(0,1,1) log(GDP)")
Coefficients and in sample error measures:
summary(fit2)
##
## Call:
## arima(x = log(ts_55_75), order = c(1, 1, 0))
##
## Coefficients:
## ar1
## 0.8394
## s.e. 0.1076
##
## sigma^2 estimated as 0.0004098: log likelihood = 49.01, aic = -94.02
##
## Training set error measures:
## ME RMSE MAE MPE MAPE
## Training set 0.006022926 0.0197573 0.01237105 0.3744576 0.7693969
## MASE ACF1
## Training set 0.3752103 0.02991256
par(mfrow=c(1,2))
acf(resid(fit2),
main="ACF for ARIMA(1,1,0) log(GDP)")
pacf(resid(fit2),
main="PACF for ARIMA(1,1,0) log(GDP)")
Coefficients and in sample error measures:
summary(fit3)
##
## Call:
## arima(x = log(ts_55_75), order = c(1, 1, 1))
##
## Coefficients:
## ar1 ma1
## 0.7442 0.3124
## s.e. 0.2026 0.4192
##
## sigma^2 estimated as 0.0003961: log likelihood = 49.3, aic = -92.59
##
## Training set error measures:
## ME RMSE MAE MPE MAPE
## Training set 0.006794403 0.01942433 0.01283329 0.4196213 0.7966188
## MASE ACF1
## Training set 0.3892298 -0.1641544
par(mfrow=c(1,2))
acf(resid(fit3),
main="ACF for ARIMA(1,1,1) log(GDP)")
pacf(resid(fit3),
main="PACF for ARIMA(1,1,1) log(GDP)")
Treatment effect is the difference beteween the forecasted value of GDP and the actual value of GDP.