Load the libraries
library(utils)
library(knitr)
library(dplyr)
The Global Financial Inclusion (Global Findex) database, launched by the World Bank in 2011, provides comparable indicators showing how people around the world save, borrow, make payments, and manage risk. The 2014 edition of the database contain 142 economies with 146688 observations of 86 variables.
Following is sample of variables within data file micro_world.csv. Variables may contain the recorded results of a direct question asked, or be derived in some way. The number of variables and the number of data points (cases) are summarized for each variable.
# Load Data Dictionary
wd <- getwd()
ddf <- paste(wd,"//Global-Findex-Data-Dictionary.csv",sep = "")
findex.data.dictionary <- read.csv(ddf, header = T)
kable(tail(findex.data.dictionary,10))
| Variable | File | Type | Format | Width | Valid.cases | Value.s. | Question | Comment | |
|---|---|---|---|---|---|---|---|---|---|
| 77 | q40bc | micro_world | Discrete | numeric | 1 | 21459 | Minimum: 1, Maximum: 3 | If received government transfers: into an account or to a card | 1-yes, 2-no, 3-don’t know(df) / refused(ref), NA |
| 78 | q40d | micro_world | Discrete | numeric | 1 | 21459 | Minimum: 1, Maximum: 4 | If received government transfers: through a mobile phone | 1-yes, 2-no, 3-don’t know(df), 4-refused(ref), NA |
| 79 | q41 | micro_world | Discrete | numeric | 1 | 14259 | Minimum: 1, Maximum: 4 | If received cashless government transfers: account use | 1-all of the money right away, 2-over time as needed, 3-don’t know(df), 4-refused(ref), NA |
| 80 | q42 | micro_world | Discrete | numeric | 1 | 14259 | Minimum: 1, Maximum: 5 | If received cashless government transfers: account type | 1-you had this account before you began receiving payments from the government, 2-you had an account before, but this account was opened so you could receive payments from the government, 3-this was your first account, and it was opened so you could receive payments from the government, 4-don’t know(df), 5-refused(ref), NA |
| 81 | q43 | micro_world | Discrete | numeric | 1 | 115563 | Minimum: 1, Maximum: 4 | Received agricultural payments in past 12 months | 1-yes, 2-no, 3-don’t know(df), 4-refused(ref), NA |
| 82 | q44a | micro_world | Discrete | numeric | 1 | 23956 | Minimum: 1, Maximum: 4 | If received agricultural payments: in cash | 1-yes, 2-no, 3-don’t know(df), 4-refused(ref), NA |
| 83 | q44b | micro_world | Discrete | numeric | 1 | 23956 | Minimum: 1, Maximum: 4 | If received agricultural payments: into an account | 1-yes, 2-no, 3-don’t know(df), 4-refused(ref), NA |
| 84 | q44c | micro_world | Discrete | numeric | 1 | 23956 | Minimum: 1, Maximum: 4 | If received agricultural payments: through a mobile phone | 1-yes, 2-no, 3-don’t know(df), 4-refused(ref), NA |
| 85 | saved | micro_world | Discrete | numeric | 1 | 146688 | Minimum: 1, Maximum: 3 | Saved in the past year | 1-yes, 2-no, 3-don’t know(df) / refused(ref) |
| 86 | borrowed | micro_world | Discrete | numeric | 1 | 146688 | Minimum: 1, Maximum: 3 | Borrowed in the past year | 1-yes, 2-no, 3-don’t know(df) / refused(ref) |
# Load Data
wd <- getwd()
df <- paste(wd,"//micro_world.csv",sep = "")
findex.raw.data <- read.csv(df, header = T)
kable(tail(findex.raw.data,10))
| economy | economycode | regionwb | pop_adult | wpid_random | wgt | female | age | educ | inc_q | account | account_fin | account_mob | q2 | q3 | q4 | q5 | q6 | q8a | q8b | q8c | q8d | q8e | q8f | q8g | q8h | q8i | q9 | q10 | q11 | q12 | q13 | q14 | q16 | q17a | q17b | q17c | q18a | q18b | q20 | q21a | q21b | q21c | q21d | q22a | q22b | q22c | q24 | q25 | q26 | q27a | q27b | q27c | q27d | q28 | q29a | q29b | q29c | q29d | q30 | q31a | q31b | q31c | q32 | q33a | q33b | q33c | q34 | q35 | q36a | q36bc | q36d | q37 | q38 | q39 | q40a | q40bc | q40d | q41 | q42 | q43 | q44a | q44b | q44c | saved | borrowed | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 146679 | Kosovo | KSV | Europe & Central Asia | 1323838 | 146964643 | 1.0732399 | 1 | 17 | 1 | 4 | 2 | 2 | NA | 2 | NA | NA | 2 | NA | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | NA | NA | NA | NA | NA | NA | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | NA | NA | NA | NA | 1 | 1 | 2 | 2 | 2 | 2 | NA | NA | NA | 1 | 1 | 2 | 2 | 2 | NA | NA | NA | NA | NA | NA | 2 | NA | NA | NA | NA | NA | 1 | 1 | 2 | 2 | 1 | 1 |
| 146680 | Kosovo | KSV | Europe & Central Asia | 1323838 | 155489096 | 0.8891532 | 2 | 23 | 2 | 4 | 1 | 1 | NA | 1 | 1 | 1 | 1 | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | NA | NA | NA | NA | 2 | NA | NA | NA | NA | 2 | NA | NA | NA | 2 | NA | NA | NA | 1 | 2 | 2 | 2 | 2 | NA | NA | 2 | NA | NA | NA | NA | NA | 2 | NA | NA | NA | 1 | 2 |
| 146681 | Kosovo | KSV | Europe & Central Asia | 1323838 | 209392015 | 0.4979076 | 2 | 52 | 2 | 4 | 1 | 1 | NA | 2 | NA | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | NA | NA | NA | 2 | NA | NA | NA | NA | NA | NA | 2 | NA | NA | NA | NA | NA | 1 | 1 | 2 | 2 | 1 | 1 |
| 146682 | Kosovo | KSV | Europe & Central Asia | 1323838 | 111923258 | 1.0057815 | 1 | 19 | 2 | 1 | 1 | 1 | NA | 2 | NA | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | NA | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | NA | NA | NA | NA | 2 | NA | NA | NA | NA | 1 | 1 | 2 | 2 | 2 | NA | NA | NA | 2 | NA | NA | NA | NA | NA | NA | 2 | NA | NA | NA | NA | NA | 2 | NA | NA | NA | 1 | 1 |
| 146683 | Kosovo | KSV | Europe & Central Asia | 1323838 | 203301882 | 0.4224128 | 1 | 52 | 2 | 5 | 1 | 1 | NA | 1 | 1 | 1 | 1 | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 4 | 1 | 2 | 1 | 2 | 1 | 2 | NA | NA | NA | NA | 1 | 1 | 2 | 2 | 2 | NA | NA | NA | 1 | 1 | 2 | 1 | 2 | 2 | 3 | 2 | NA | NA | NA | NA | NA | 1 | 1 | 2 | 2 | 1 | 1 |
| 146684 | Kosovo | KSV | Europe & Central Asia | 1323838 | 191255055 | 0.3576257 | 2 | 23 | 2 | 5 | 1 | 1 | NA | 1 | 1 | 1 | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 3 | 2 | NA | NA | NA | NA | 2 | NA | NA | NA | NA | 1 | 1 | 2 | 2 | 2 | NA | NA | NA | 1 | 1 | 2 | 1 | 2 | 2 | 3 | 2 | NA | NA | NA | NA | NA | 1 | 1 | 2 | 2 | 1 | 1 |
| 146685 | Kosovo | KSV | Europe & Central Asia | 1323838 | 114164617 | 0.5364385 | 2 | 45 | 2 | 4 | 1 | 1 | NA | 1 | 1 | 1 | 1 | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 4 | 1 | 2 | 1 | 2 | 1 | 2 | NA | NA | NA | NA | 1 | 1 | 2 | 2 | 2 | NA | NA | NA | 1 | 1 | 2 | 1 | 2 | 2 | 3 | 2 | NA | NA | NA | NA | NA | 1 | 1 | 2 | 2 | 1 | 1 |
| 146686 | Kosovo | KSV | Europe & Central Asia | 1323838 | 120046994 | 1.9080592 | 2 | 48 | 1 | 3 | 1 | 1 | NA | 2 | NA | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | 3 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | NA | NA | NA | NA | 2 | NA | NA | NA | NA | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | NA | NA | NA | NA | NA | NA | 2 | NA | NA | NA | NA | NA | 1 | 1 | 2 | 2 | 1 | 1 |
| 146687 | Kosovo | KSV | Europe & Central Asia | 1323838 | 146340621 | 0.3576257 | 2 | 75 | 2 | 5 | 1 | 1 | NA | 1 | 2 | 1 | 1 | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | NA | NA | NA | NA | 1 | 1 | 1 | 2 | 4 | NA | NA | NA | 1 | 1 | 2 | 1 | 2 | 1 | 4 | 2 | NA | NA | NA | NA | NA | 2 | NA | NA | NA | 1 | 1 |
| 146688 | Kosovo | KSV | Europe & Central Asia | 1323838 | 151657570 | 0.7409610 | 2 | 27 | 2 | 2 | 2 | 2 | NA | 2 | NA | NA | 2 | NA | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | NA | NA | NA | NA | NA | NA | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | NA | NA | NA | NA | 2 | NA | NA | NA | NA | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | NA | NA | NA | NA | NA | NA | 2 | NA | NA | NA | NA | NA | 2 | NA | NA | NA | 2 | 2 |
# There are a lot of columns in this dataset. This will subset the dataset to include only the observations we are interested in. Rename column name accordingly.
data.filter1 <- findex.raw.data %>%
filter(regionwb %in% c("Middle East","East Asia & Pacific","South Asia"))
data.filter1 <- rename(data.filter1, gender = female)
Research would be more specific to economies that fall under the regions Middle East, East Asia & Pacific and South Asia.
Each case represents a person at least 15 years of age from the economy(country) and region. There are total of 146688 observations across the world and 27343 observation from the regions Middle East, East Asia & Pacific and South Asia.
The Global Financial Inclusion (Global Findex) Database is the world’s most comprehensive gauge of how adults around the world save, borrow, make payments and manage risk. Launched in 2011 with the support of the Bill & Melinda Gates Foundation. Three years later, the 2014 Global Findex provides an update on the indicators collected in 2011. The Global Findex indicators are drawn from survey data collected by Gallup, Inc. over the 2014 calendar year. World - Global Financial Inclusion (Global Findex) Database 2014 is maintained by World Bank.
This is an observational study.
Development Research Group, Finance and Private Sector Development Unit - World Bank. Additional information regarding World - Global Financial Inclusion (Global Findex) Database 2014 can be found at http://www.worldbank.org/en/programs/globalfindex.
The reference citation for the 2014 Global Findex data is Asli Demirguc-Kunt, Leora Klapper, Dorothe Singer, Peter Van Oudheusden The Global Findex Database 2014: Measuring Financial Inclusion around the World. Policy Research Working Paper 7255.
The response variables are account ownership and wage payments. All the values are numerical.
The explanatory variables are count of populations based on age, gender, household income and economy. All the values are numerical.
data.filter1 %>%
group_by (gender) %>%
summarise(count = n())
## # A tibble: 2 × 2
## gender count
## <int> <int>
## 1 1 12792
## 2 2 14551