#load packages needed for this assignment
library(tidyverse)## Warning: package 'tidyverse' was built under R version 3.3.2
## Loading tidyverse: ggplot2
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Loading tidyverse: dplyr
## Warning: package 'ggplot2' was built under R version 3.3.2
## Warning: package 'tidyr' was built under R version 3.3.2
## Conflicts with tidy packages ----------------------------------------------
## filter(): dplyr, stats
## lag(): dplyr, stats
library(psych)##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
d = read.csv("~/Desktop/PSYC254/livingston2012/Pilot_A.csv")
d.tidy = d %>%
filter(manipcheck == 0) %>%
dplyr::select(T_race, T_gender, T_behavior, Q11_1:Q11_4, Q13_1, Q14_1, Q17,Q19,Q21,Q23,Q25, Q27,Q29) %>%
rename(lead_well=Q11_1) %>%
rename(lead_max=Q11_2) %>%
rename(lead_admire=Q11_3) %>%
rename(lead_respect=Q11_4) %>%
rename(lead_salary = Q13_1) %>%
rename(PvsS = Q14_1) %>%
rename(race = Q17) %>%
rename(age = Q19) %>%
rename(gender = Q21) %>%
rename(educ = Q23) %>%
rename(workexp = Q25) %>%
rename(pol_s = Q27) %>%
rename(pol_e = Q29)
d.tidy$T_race = as.factor(d.tidy$T_race)
levels(d.tidy$T_race)[1] = "white"
levels(d.tidy$T_race)[2] = "black"
d.tidy$T_gender = as.factor(d.tidy$T_gender)
levels(d.tidy$T_gender)[1] = "male"
levels(d.tidy$T_gender)[2] = "female"
d.tidy$T_behavior = as.factor(d.tidy$T_behavior)
levels(d.tidy$T_behavior)[1] = "agentic"
levels(d.tidy$T_behavior)[2] = "communal"
d.tidy$lead_well = as.numeric(d.tidy$lead_well)
d.tidy$lead_max = as.numeric(d.tidy$lead_max)
d.tidy$lead_admire = as.numeric(d.tidy$lead_admire)
d.tidy$lead_respect = as.numeric(d.tidy$lead_respect)
d.tidy$lead_salary = as.numeric(d.tidy$lead_salary)
d.tidy$leadev = rowMeans(d.tidy[,4:8]) #make composite
lead = matrix(c(d.tidy$lead_well, d.tidy$lead_max, d.tidy$lead_admire, d.tidy$lead_respect,d.tidy$lead_salary), ncol=5)
#alpha(lead) #reliability check -- won't run with the small dataset I have now, but should work in the futureThe main analyses from Livingston et al, 2012.
#summary(lm(leadev ~ T_race*T_gender*T_behavior, d.tidy)) #main 3 way interaction (leader evaluations)
d.women = d.tidy %>%
filter(T_gender == "female")
#summary(lm(leadev ~ T_race*T_behavior, d.women)) #2 way for women (leader evaluations)
d.men = d.tidy %>%
filter(T_gender == "male")
#summary(lm(leadev ~ T_race*T_behavior, d.men)) #2 way for men (leader evaluations)
#summary(lm(PvsS ~ T_race*T_gender*T_behavior,d.tidy)) #3 way interaction (attribution of behavior)
#summary(lm(PvsS ~ T_race*T_behavior,d.women)) #2 way for women (attribution of behavior)
#summary(lm(PvsS ~ T_race*T_behavior,d.men)) #2 way for men (attribution of behavior)
summary(lm(PvsS ~ T_race,d.tidy)) #main effect of race##
## Call:
## lm(formula = PvsS ~ T_race, data = d.tidy)
##
## Residuals:
## 1 2 3 4 5
## 5.000e-01 -8.327e-17 -5.000e-01 0.000e+00 0.000e+00
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0000 0.2357 16.971 0.000446 ***
## T_raceblack -0.5000 0.3727 -1.342 0.272228
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4082 on 3 degrees of freedom
## Multiple R-squared: 0.375, Adjusted R-squared: 0.1667
## F-statistic: 1.8 on 1 and 3 DF, p-value: 0.2722