setwd("~/Documents/Dropbox/Research/Bernd")
p<-read.csv ("measuring_TIF.csv", header=T, sep=",")
p$attn1[p$attn=="attention" |p$attn== "Attention" |p$attn== "ATTENTION"]<-1
p$attn1[p$attn!="attention" &p$attn!= "Attention" &p$attn!= "ATTENTION"]<-0
table(p$attn1)
##
## 0 1
## 59 344
#p<-subset(p, attn=="attention" |attn== "Attention" |attn== "ATTENTION")
MC check car
table(p$attncar)
##
## 1 2 3 4
## 254 19 7 6
p$attncar1[p$attncar==1]<-1
p$attncar1[p$attncar!=1]<-0
#p<-subset(p, attncar==1)
creating variables: the difference in willingness to try/buy driverless cars before vs. after facts, and trust in feelings + reverse coded trust in facts. then doing t tests and correlations.
p$cars1<-(p$Rcars1_1+p$Rcars1_2)/2
p$cars2<-(p$Rcars2_1+p$Rcars2_2)/2
#people are marginally more willing post-facts
t.test(p$cars1, p$cars2)
##
## Welch Two Sample t-test
##
## data: p$cars1 and p$cars2
## t = -1.6837, df = 569.76, p-value = 0.09279
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -9.8215752 0.7551417
## sample estimates:
## mean of x mean of y
## 51.79021 56.32343
p$carsdiff<-p$cars2-p$cars1
#people rely more on feelings than on facts overall when reporting their willingness post-facts
t.test(p$carsmod_1, p$carsmod_2)
##
## Welch Two Sample t-test
##
## data: p$carsmod_1 and p$carsmod_2
## t = 2.3965, df = 561.21, p-value = 0.01688
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.000033 10.086754
## sample estimates:
## mean of x mean of y
## 66.13287 60.58947
p$carsmod<- p$carsmod_1 + (101-p$carsmod_2)
#so there's a negative correlation between trust in feelings and the size of the change in willingness pre to post fact. more trust in feelings, smaller change in willingness.
cor.test(p$carsmod, p$carsdiff)
##
## Pearson's product-moment correlation
##
## data: p$carsmod and p$carsdiff
## t = -2.0432, df = 283, p-value = 0.04196
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.233484150 -0.004443013
## sample estimates:
## cor
## -0.1205678
The key relationship between reliance in feelings (carsmod) and the difference in attitudes pre/post fact holds even when controling for passing the attention checks.
summary(lm(carsdiff~carsmod + attn1 + attncar1, data=p))
##
## Call:
## lm(formula = carsdiff ~ carsmod + attn1 + attncar1, data = p)
##
## Residuals:
## Min 1Q Median 3Q Max
## -66.836 -5.734 -1.926 3.395 93.766
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.75899 3.79303 0.200 0.84155
## carsmod -0.04145 0.01904 -2.176 0.03035 *
## attn1 0.80457 2.50346 0.321 0.74816
## attncar1 8.35721 2.81621 2.968 0.00326 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.78 on 281 degrees of freedom
## (118 observations deleted due to missingness)
## Multiple R-squared: 0.04519, Adjusted R-squared: 0.03499
## F-statistic: 4.433 on 3 and 281 DF, p-value: 0.004601
No correlation between reliance on feelings and confidence in decision strong correlation between reliance on feelings and belief that the facts are true
cor.test(p$carsmod, p$confcar_1)
##
## Pearson's product-moment correlation
##
## data: p$carsmod and p$confcar_1
## t = 0.040784, df = 278, p-value = 0.9675
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1148083 0.1196332
## sample estimates:
## cor
## 0.002446044
cor.test(p$carsmod, p$believecar_1)
##
## Pearson's product-moment correlation
##
## data: p$carsmod and p$believecar_1
## t = -9.8815, df = 283, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.5880644 -0.4146997
## sample estimates:
## cor
## -0.5064831
MEAT
table(p$meatcheck)
##
## 1 2 3 4
## 29 215 7 6
p$meatcheck1[p$meatcheck==2]<-1
p$meatcheck1[p$meatcheck!=2]<-0
people are more willing to try this meat post facts. no difference in reliance on feelings vs. facts!
t.test(p$meat1_1, p$meat2_1)
##
## Welch Two Sample t-test
##
## data: p$meat1_1 and p$meat2_1
## t = -2.2176, df = 507.38, p-value = 0.02702
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -12.5358650 -0.7582526
## sample estimates:
## mean of x mean of y
## 57.25882 63.90588
t.test(p$meatmod_1, p$meatmod_2)
##
## Welch Two Sample t-test
##
## data: p$meatmod_1 and p$meatmod_2
## t = 0.62897, df = 504.4, p-value = 0.5297
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.572218 6.936441
## sample estimates:
## mean of x mean of y
## 62.80859 61.12648
no correlation here :(
p$meatdiff<-p$meat2_1-p$meat1_1
p$meatmod<-p$meatmod_1+(101-p$meatmod_2)
cor.test(p$meatmod, p$meatdiff)
##
## Pearson's product-moment correlation
##
## data: p$meatmod and p$meatdiff
## t = -0.18042, df = 249, p-value = 0.857
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1350608 0.1125457
## sample estimates:
## cor
## -0.01143278
Interestingly, however, there IS a correlation between reliance on feelings and willingness to try the meat, poth pre- and post-facts
cor.test(p$meatmod, p$meat2_1)
##
## Pearson's product-moment correlation
##
## data: p$meatmod and p$meat2_1
## t = -10.591, df = 250, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6363401 -0.4649309
## sample estimates:
## cor
## -0.5565296
cor.test(p$meatmod, p$meat1_1)
##
## Pearson's product-moment correlation
##
## data: p$meatmod and p$meat1_1
## t = -10.006, df = 249, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6183491 -0.4409520
## sample estimates:
## cor
## -0.5355321
key relationship still isn’t there when controlling for attention check success
summary(lm(meatdiff~meatmod + attn1 + meatcheck1, data=p))
##
## Call:
## lm(formula = meatdiff ~ meatmod + attn1 + meatcheck1, data = p)
##
## Residuals:
## Min 1Q Median 3Q Max
## -62.485 -8.296 -3.297 4.281 64.799
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.434714 3.636143 -0.945 0.3458
## meatmod -0.001215 0.018125 -0.067 0.9466
## attn1 5.763243 2.552242 2.258 0.0248 *
## meatcheck1 6.091064 2.425843 2.511 0.0127 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.33 on 247 degrees of freedom
## (152 observations deleted due to missingness)
## Multiple R-squared: 0.04529, Adjusted R-squared: 0.03369
## F-statistic: 3.906 on 3 and 247 DF, p-value: 0.009434
TERRORISM
table(p$mc_terror)
##
## 1 2 3 4
## 236 12 10 3
p$terrorcheck[p$mc_terror==1]<-1
p$terrorcheck[p$mc_terror!=1]<-0
Much less concerned post facts, much more reliance on facts vs. feelings
p$terror1<-(p$terror_concern_1_1+p$terror_die_1_1)/2
p$terror2<-(p$terror_concern_2_1+p$terror_die_2_1)/2
t.test(p$terror1, p$terror2)
##
## Welch Two Sample t-test
##
## data: p$terror1 and p$terror2
## t = 4.0852, df = 518.98, p-value = 5.1e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 4.118053 11.747847
## sample estimates:
## mean of x mean of y
## 33.14943 25.21648
t.test(p$terrormod_1, p$terrormod_2)
##
## Welch Two Sample t-test
##
## data: p$terrormod_1 and p$terrormod_2
## t = -7.345, df = 514.5, p-value = 8.115e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -24.37736 -14.08871
## sample estimates:
## mean of x mean of y
## 51.59004 70.82308
Expected correlation shows up again.
p$terrordiff<-p$terror1-p$terror2
p$terrormod<-p$terrormod_1+(101-p$terrormod_2)
cor.test(p$terrormod, p$terrordiff)
##
## Pearson's product-moment correlation
##
## data: p$terrormod and p$terrordiff
## t = -2.9858, df = 258, p-value = 0.0031
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.29779181 -0.06249484
## sample estimates:
## cor
## -0.182759
Holds controlling for attn checks.
summary(lm(terrordiff~terrormod + attn1 + terrorcheck, data=p))
##
## Call:
## lm(formula = terrordiff ~ terrormod + attn1 + terrorcheck, data = p)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.633 -7.598 -3.108 6.029 51.684
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.86221 3.44198 2.865 0.00451 **
## terrormod -0.04676 0.01624 -2.879 0.00432 **
## attn1 -2.90730 2.35779 -1.233 0.21868
## terrorcheck 4.57706 2.80401 1.632 0.10384
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.99 on 256 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.04654, Adjusted R-squared: 0.03537
## F-statistic: 4.166 on 3 and 256 DF, p-value: 0.006651
cor.test(p$believeterror_1, p$terrormod)
##
## Pearson's product-moment correlation
##
## data: p$believeterror_1 and p$terrormod
## t = -6.5385, df = 256, p-value = 3.35e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.4783148 -0.2685695
## sample estimates:
## cor
## -0.3782871
Trust in institutions… more liberal people trust the govt less, academic research more, CDC more, no diff. for tech companies
cor.test(p$poli2_1, p$trust_1)
##
## Pearson's product-moment correlation
##
## data: p$poli2_1 and p$trust_1
## t = -1.7241, df = 398, p-value = 0.08547
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.18260968 0.01205389
## sample estimates:
## cor
## -0.08609959
cor.test(p$poli2_1, p$trust_3)
##
## Pearson's product-moment correlation
##
## data: p$poli2_1 and p$trust_3
## t = 6.2368, df = 398, p-value = 1.142e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2063664 0.3851636
## sample estimates:
## cor
## 0.2983805
cor.test(p$poli2_1, p$trust_4)
##
## Pearson's product-moment correlation
##
## data: p$poli2_1 and p$trust_4
## t = 5.943, df = 398, p-value = 6.117e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1928453 0.3731057
## sample estimates:
## cor
## 0.2854986
cor.test(p$poli2_1, p$trust_5)
##
## Pearson's product-moment correlation
##
## data: p$poli2_1 and p$trust_5
## t = 1.0076, df = 397, p-value = 0.3143
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.04790702 0.14794625
## sample estimates:
## cor
## 0.05050517
#republican/democrat t-tests
rep<-subset(p, party==1)
dem<-subset(p, party==2)
t.test(rep$trust_1, dem$trust_1)
##
## Welch Two Sample t-test
##
## data: rep$trust_1 and dem$trust_1
## t = 1.1475, df = 278.66, p-value = 0.2522
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.308800 8.762133
## sample estimates:
## mean of x mean of y
## 39.70667 36.48000
t.test(rep$trust_3, dem$trust_3)
##
## Welch Two Sample t-test
##
## data: rep$trust_3 and dem$trust_3
## t = -4.8955, df = 276.63, p-value = 1.669e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -17.627492 -7.516508
## sample estimates:
## mean of x mean of y
## 59.020 71.592
t.test(rep$trust_4, dem$trust_4)
##
## Welch Two Sample t-test
##
## data: rep$trust_4 and dem$trust_4
## t = -5.3247, df = 293.7, p-value = 2.014e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -20.246552 -9.318781
## sample estimates:
## mean of x mean of y
## 54.89333 69.67600
t.test(rep$trust_5, dem$trust_5)
##
## Welch Two Sample t-test
##
## data: rep$trust_5 and dem$trust_5
## t = -0.14955, df = 283.84, p-value = 0.8812
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.343948 4.589264
## sample estimates:
## mean of x mean of y
## 54.79866 55.17600
Effect of reliance on feelings on difference in attitudes towards terrorism pre/post facts holds after controlling for trust in CDC.
Also, trust in CDC correlates positively with the size of the difference pre/post facts, and negatively with trust in feelings
summary(lm(terrordiff~ terrormod + trust_4, data=p))
##
## Call:
## lm(formula = terrordiff ~ terrormod + trust_4, data = p)
##
## Residuals:
## Min 1Q Median 3Q Max
## -36.581 -7.387 -2.518 6.212 50.013
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.00145 2.74356 2.552 0.0113 *
## terrormod -0.04254 0.01647 -2.583 0.0103 *
## trust_4 0.06406 0.03044 2.104 0.0363 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.95 on 256 degrees of freedom
## (144 observations deleted due to missingness)
## Multiple R-squared: 0.05114, Adjusted R-squared: 0.04373
## F-statistic: 6.899 on 2 and 256 DF, p-value: 0.001207
cor.test(p$trust_4, p$terrordiff)
##
## Pearson's product-moment correlation
##
## data: p$trust_4 and p$terrordiff
## t = 2.9119, df = 258, p-value = 0.003906
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.05798543 0.29366178
## sample estimates:
## cor
## 0.1783808
cor.test(p$trust_4, p$terrormod)
##
## Pearson's product-moment correlation
##
## data: p$trust_4 and p$terrormod
## t = -3.2428, df = 257, p-value = 0.00134
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.31259995 -0.07826845
## sample estimates:
## cor
## -0.1982657
meat relationship doesn’t improve controlling for trust in academic research
summary(lm(meatdiff~meatmod + trust_3, data=p))
##
## Call:
## lm(formula = meatdiff ~ meatmod + trust_3, data = p)
##
## Residuals:
## Min 1Q Median 3Q Max
## -66.481 -6.579 -4.767 3.496 66.780
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.237650 3.589733 1.738 0.0835 .
## meatmod -0.003613 0.018895 -0.191 0.8485
## trust_3 0.007530 0.037669 0.200 0.8417
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.64 on 246 degrees of freedom
## (154 observations deleted due to missingness)
## Multiple R-squared: 0.0003822, Adjusted R-squared: -0.007745
## F-statistic: 0.04703 on 2 and 246 DF, p-value: 0.9541
main relationship for cars holds controlling for trust in academic research
summary(lm(carsdiff~carsmod + trust_3, data=p))
##
## Call:
## lm(formula = carsdiff ~ carsmod + trust_3, data = p)
##
## Residuals:
## Min 1Q Median 3Q Max
## -74.247 -5.904 -1.454 3.249 92.933
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.19590 3.52098 1.192 0.2344
## carsmod -0.03442 0.01943 -1.772 0.0775 .
## trust_3 0.05973 0.03653 1.635 0.1031
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.94 on 281 degrees of freedom
## (119 observations deleted due to missingness)
## Multiple R-squared: 0.0238, Adjusted R-squared: 0.01685
## F-statistic: 3.425 on 2 and 281 DF, p-value: 0.0339
other moderators - desire for control
p$cont<-(p$cont1_1+p$cont2_1)/2
summary(lm(carsdiff~carsmod * cont, data=p))
##
## Call:
## lm(formula = carsdiff ~ carsmod * cont, data = p)
##
## Residuals:
## Min 1Q Median 3Q Max
## -74.364 -5.508 -2.132 3.410 93.430
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.94024 9.20593 1.080 0.281
## carsmod -0.07882 0.07796 -1.011 0.313
## cont -0.25792 1.87479 -0.138 0.891
## carsmod:cont 0.00834 0.01584 0.527 0.599
##
## Residual standard error: 14.99 on 281 degrees of freedom
## (118 observations deleted due to missingness)
## Multiple R-squared: 0.01756, Adjusted R-squared: 0.007068
## F-statistic: 1.674 on 3 and 281 DF, p-value: 0.1728
cor.test(p$cont, p$carsmod)
##
## Pearson's product-moment correlation
##
## data: p$cont and p$carsmod
## t = -0.26256, df = 283, p-value = 0.7931
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1315539 0.1007644
## sample estimates:
## cor
## -0.01560539
summary(lm(meatdiff~meatmod * cont, data=p))
##
## Call:
## lm(formula = meatdiff ~ meatmod * cont, data = p)
##
## Residuals:
## Min 1Q Median 3Q Max
## -66.276 -7.228 -3.994 4.417 68.345
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.74952 8.52165 -0.909 0.3640
## meatmod 0.10506 0.07482 1.404 0.1615
## cont 3.19267 1.81509 1.759 0.0798 .
## meatmod:cont -0.02376 0.01575 -1.509 0.1326
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.57 on 247 degrees of freedom
## (152 observations deleted due to missingness)
## Multiple R-squared: 0.01256, Adjusted R-squared: 0.0005654
## F-statistic: 1.047 on 3 and 247 DF, p-value: 0.3723
cor.test(p$cont, p$meatmod)
##
## Pearson's product-moment correlation
##
## data: p$cont and p$meatmod
## t = 0.94618, df = 251, p-value = 0.345
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.06418398 0.18160862
## sample estimates:
## cor
## 0.05961589
summary(lm(terrordiff~terrormod * cont, data=p))
##
## Call:
## lm(formula = terrordiff ~ terrormod * cont, data = p)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.631 -7.258 -3.032 5.806 51.608
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.8109532 5.7026346 2.071 0.0393 *
## terrormod -0.0518062 0.0545109 -0.950 0.3428
## cont -0.0413310 1.2023780 -0.034 0.9726
## terrormod:cont 0.0007968 0.0116478 0.068 0.9455
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.08 on 256 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.03342, Adjusted R-squared: 0.0221
## F-statistic: 2.951 on 3 and 256 DF, p-value: 0.03326
cor.test(p$cont, p$terrormod)
##
## Pearson's product-moment correlation
##
## data: p$cont and p$terrormod
## t = -0.67035, df = 258, p-value = 0.5032
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.16252712 0.08036342
## sample estimates:
## cor
## -0.04169791
reliance on feelings vs. facts for political and for tech decisions in general… works for meat!
summary(lm(carsdiff~carsmod + techmode_1, data=p))
##
## Call:
## lm(formula = carsdiff ~ carsmod + techmode_1, data = p)
##
## Residuals:
## Min 1Q Median 3Q Max
## -73.942 -5.694 -1.841 2.944 93.707
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.50801 5.06308 0.890 0.374
## carsmod -0.03293 0.02044 -1.611 0.108
## techmode_1 0.65873 0.72020 0.915 0.361
##
## Residual standard error: 14.97 on 282 degrees of freedom
## (118 observations deleted due to missingness)
## Multiple R-squared: 0.01745, Adjusted R-squared: 0.01048
## F-statistic: 2.504 on 2 and 282 DF, p-value: 0.08354
summary(lm(meatdiff~meatmod + techmode_1, data=p))
##
## Call:
## lm(formula = meatdiff ~ meatmod + techmode_1, data = p)
##
## Residuals:
## Min 1Q Median 3Q Max
## -62.566 -7.441 -3.332 4.150 62.246
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.15291 5.16036 -0.999 0.3190
## meatmod 0.01412 0.01953 0.723 0.4704
## techmode_1 1.90937 0.75630 2.525 0.0122 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.45 on 248 degrees of freedom
## (152 observations deleted due to missingness)
## Multiple R-squared: 0.02518, Adjusted R-squared: 0.01732
## F-statistic: 3.203 on 2 and 248 DF, p-value: 0.04231
summary(lm(terrordiff~terrormod + polimode_1, data=p))
##
## Call:
## lm(formula = terrordiff ~ terrormod + polimode_1, data = p)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.733 -7.244 -2.877 5.932 51.768
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.35590 4.17390 3.200 0.00155 **
## terrormod -0.05007 0.01669 -3.000 0.00296 **
## polimode_1 -0.30360 0.68126 -0.446 0.65623
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.05 on 257 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.03415, Adjusted R-squared: 0.02663
## F-statistic: 4.543 on 2 and 257 DF, p-value: 0.01151