Clustering analysis is used to find groups of similar objects in a dataset. There are two main categories of clustering:

These clustering methods can be computed using the R packages stats (for k-means) and cluster (for pam, clara and fanny), but the workflow require multiple steps and multiple lines of R codes. In this chapter, we provide some easy-to-use functions for enhancing the workflow of clustering analyses and we implemented ggplot2 method for visualizing the results.

1 Required package


The following R packages are required in this chapter: * factoextra for enhanced clustering analyses and data visualization * cluster for computing the standard PAM, CLARA, FANNY, AGNES and DIANA clustering

1.factoextra can be installed as follow:

if(!require(devtools)) install.packages("devtools")

devtools::install_github("kassambara/factoextra")

2.Install cluster:

install.packages("cluster")

3.Load required packages:

library(factoextra)
library(cluster)

2 Data preparation


The built-in R dataset USArrests is used:

# Load and scale the dataset
data("USArrests")
df <- scale(USArrests)
head(df)
##                Murder   Assault   UrbanPop         Rape
## Alabama    1.24256408 0.7828393 -0.5209066 -0.003416473
## Alaska     0.50786248 1.1068225 -1.2117642  2.484202941
## Arizona    0.07163341 1.4788032  0.9989801  1.042878388
## Arkansas   0.23234938 0.2308680 -1.0735927 -0.184916602
## California 0.27826823 1.2628144  1.7589234  2.067820292
## Colorado   0.02571456 0.3988593  0.8608085  1.864967207

3 Enhanced distance matrix computation and visualization


This section describes two functions:


# Correlation-based distance method
res.dist <- get_dist(df, method = "pearson")
head(round(as.matrix(res.dist), 2))[, 1:6]
##            Alabama Alaska Arizona Arkansas California Colorado
## Alabama       0.00   0.71    1.45     0.09       1.87     1.69
## Alaska        0.71   0.00    0.83     0.37       0.81     0.52
## Arizona       1.45   0.83    0.00     1.18       0.29     0.60
## Arkansas      0.09   0.37    1.18     0.00       1.59     1.37
## California    1.87   0.81    0.29     1.59       0.00     0.11
## Colorado      1.69   0.52    0.60     1.37       0.11     0.00
# Visualize the dissimilarity matrix
fviz_dist(res.dist, lab_size = 8)

The ordered dissimilarity matrix image (ODI) displays the clustering tendency of the dataset. Similar objects are close to one another. Red color corresponds to small distance and blue color indicates big distance between observation.

4 Enhanced clustering analysis


# Load and scale the dataset
data("USArrests")
df <- scale(USArrests)
# Compute dissimilarity matrix
res.dist <- dist(df, method = "euclidean")
# Compute hierarchical clustering
res.hc <- hclust(res.dist, method = "ward.D2")
# Visualize
plot(res.hc, cex = 1, col="blue")

In this chapter, we provide the function eclust() [in factoextra] which provides several advantages:

4.1 eclust() function

eclust(x, FUNcluster = "kmeans", hc_metric = "euclidean", ...)

  • x: numeric vector, data matrix or data frame
  • FUNcluster: a clustering function including “kmeans”, “pam”, “clara”, “fanny”, “hclust”, “agnes” and “diana”. Abbreviation is allowed.
  • hc_metric: character string specifying the metric to be used for calculating dissimilarities between observations. Allowed values are those accepted by the function dist() [including “euclidean”, “manhattan”, “maximum”, “canberra”, “binary”, “minkowski”] and correlation based distance measures [“pearson”, “spearman” or “kendall”]. Used only when FUNcluster is a hierarchical clustering function such as one of “hclust”, “agnes” or “diana”.
  • …: other arguments to be passed to FUNcluster. The function eclust() returns an object of class eclust containing the result of the standard function used (e.g., kmeans, pam, hclust, agnes, diana, etc.).

It includes also:

  • cluster: the cluster assignment of observations after cutting the tree
  • nbclust: the number of clusters
  • silinfo: the silhouette information of observations
  • size: the size of clusters
  • data: a matrix containing the original or the standardized data (if stand = TRUE)
  • gap_stat: containing gap statistics

4.2 Examples

In this section we’ll show some examples for enhanced k-means clustering and hierarchical clustering. Note that the same analysis can be done for PAM, CLARA, FANNY, AGNES and DIANA.

# Enhanced k-means clustering
res.km <- eclust(df, "kmeans", nstart = 25)

# Gap statistic plot
fviz_gap_stat(res.km$gap_stat)

# Silhouette plot
fviz_silhouette(res.km)
##   cluster size ave.sil.width
## 1       1    8          0.39
## 2       2   16          0.34
## 3       3   13          0.37
## 4       4   13          0.27

# Optimal number of clusters using gap statistics
res.km$nbclust
## [1] 4
# Print result
 res.km
## K-means clustering with 4 clusters of sizes 8, 16, 13, 13
## 
## Cluster means:
##       Murder    Assault   UrbanPop        Rape
## 1  1.4118898  0.8743346 -0.8145211  0.01927104
## 2 -0.4894375 -0.3826001  0.5758298 -0.26165379
## 3 -0.9615407 -1.1066010 -0.9301069 -0.96676331
## 4  0.6950701  1.0394414  0.7226370  1.27693964
## 
## Clustering vector:
##        Alabama         Alaska        Arizona       Arkansas     California 
##              1              4              4              1              4 
##       Colorado    Connecticut       Delaware        Florida        Georgia 
##              4              2              2              4              1 
##         Hawaii          Idaho       Illinois        Indiana           Iowa 
##              2              3              4              2              3 
##         Kansas       Kentucky      Louisiana          Maine       Maryland 
##              2              3              1              3              4 
##  Massachusetts       Michigan      Minnesota    Mississippi       Missouri 
##              2              4              3              1              4 
##        Montana       Nebraska         Nevada  New Hampshire     New Jersey 
##              3              3              4              3              2 
##     New Mexico       New York North Carolina   North Dakota           Ohio 
##              4              4              1              3              2 
##       Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina 
##              2              2              2              2              1 
##   South Dakota      Tennessee          Texas           Utah        Vermont 
##              3              1              4              2              3 
##       Virginia     Washington  West Virginia      Wisconsin        Wyoming 
##              2              2              3              3              2 
## 
## Within cluster sum of squares by cluster:
## [1]  8.316061 16.212213 11.952463 19.922437
##  (between_SS / total_SS =  71.2 %)
## 
## Available components:
## 
##  [1] "cluster"      "centers"      "totss"        "withinss"    
##  [5] "tot.withinss" "betweenss"    "size"         "iter"        
##  [9] "ifault"       "clust_plot"   "silinfo"      "nbclust"     
## [13] "data"         "gap_stat"
 # Enhanced hierarchical clustering
 res.hc <- eclust(df, "hclust") # compute hclust
 fviz_dend(res.hc, rect = TRUE) # dendrogam

 fviz_silhouette(res.hc) # silhouette plot
##   cluster size ave.sil.width
## 1       1   19          0.26
## 2       2   19          0.28
## 3       3   12          0.43

 fviz_cluster(res.hc) # scatter plot

It’s also possible to specify the number of clusters as follow:

eclust(df, "kmeans", k = 4)

## K-means clustering with 4 clusters of sizes 13, 16, 13, 8
## 
## Cluster means:
##       Murder    Assault   UrbanPop        Rape
## 1 -0.9615407 -1.1066010 -0.9301069 -0.96676331
## 2 -0.4894375 -0.3826001  0.5758298 -0.26165379
## 3  0.6950701  1.0394414  0.7226370  1.27693964
## 4  1.4118898  0.8743346 -0.8145211  0.01927104
## 
## Clustering vector:
##        Alabama         Alaska        Arizona       Arkansas     California 
##              4              3              3              4              3 
##       Colorado    Connecticut       Delaware        Florida        Georgia 
##              3              2              2              3              4 
##         Hawaii          Idaho       Illinois        Indiana           Iowa 
##              2              1              3              2              1 
##         Kansas       Kentucky      Louisiana          Maine       Maryland 
##              2              1              4              1              3 
##  Massachusetts       Michigan      Minnesota    Mississippi       Missouri 
##              2              3              1              4              3 
##        Montana       Nebraska         Nevada  New Hampshire     New Jersey 
##              1              1              3              1              2 
##     New Mexico       New York North Carolina   North Dakota           Ohio 
##              3              3              4              1              2 
##       Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina 
##              2              2              2              2              4 
##   South Dakota      Tennessee          Texas           Utah        Vermont 
##              1              4              3              2              1 
##       Virginia     Washington  West Virginia      Wisconsin        Wyoming 
##              2              2              1              1              2 
## 
## Within cluster sum of squares by cluster:
## [1] 11.952463 16.212213 19.922437  8.316061
##  (between_SS / total_SS =  71.2 %)
## 
## Available components:
## 
##  [1] "cluster"      "centers"      "totss"        "withinss"    
##  [5] "tot.withinss" "betweenss"    "size"         "iter"        
##  [9] "ifault"       "clust_plot"   "silinfo"      "nbclust"     
## [13] "data"

5 Infos

This analysis has been performed using R software (R version 3.3.2 )