Chapter 15 Probability
15.1 What is Probability
15.1.1 Events and Probability
Events Probability
Two types: frequentlist or classical Bayesian
See also: Likelihood: http://students.brown.edu/seeing-theory/basic-probability/index.html#first Expectation: http://students.brown.edu/seeing-theory/basic-probability/index.html#second and Estimation: http://students.brown.edu/seeing-theory/basic-probability/index.html#third
When two events are said to be independent of each other, what this means is that the probability that one event occurs in no way affects the probability of the other event occurring. An example of two independent events is as follows; say you rolled a die and flipped a coin.
15.1.2 Conditional Probability
15.1.3 Intersection
15.1.4 Union
15.1.5 Complement
See Also: Set Theory: http://students.brown.edu/seeing-theory/compound-probability/index.html#first Combinatorics: http://students.brown.edu/seeing-theory/compound-probability/index.html#second Conditional Probability: http://students.brown.edu/seeing-theory/compound-probability/index.html#third
Random Variables and Probability Distributions
15.2.1 Realizations
15.2.2 Discrete Random Variables
cumulative probability distributions of discrete random variables. Mean and Variance of a discrete random variable
15.2.3 Continuous Random Variables
Cummulative Probability distributions of continuous Random Variables Mean and Variance of a Continuous Random Variable
15.2.4 Shape, Skew and Modality
LS0tDQp0aXRsZTogIkNoYXB0ZXIgMTUgUHJvYmFiaWxpdHkiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQo8aDE+IENoYXB0ZXIgMTUgUHJvYmFiaWxpdHkgPC9oMT4NCjxoMj4gMTUuMSBXaGF0IGlzIFByb2JhYmlsaXR5PC9oMj4NCjxoMz4gMTUuMS4xIEV2ZW50cyBhbmQgUHJvYmFiaWxpdHk8L2gzPg0KRXZlbnRzPC9icj4NClByb2JhYmlsaXR5PC9icj4NCjwvYnI+DQoNClR3byB0eXBlczo8L2JyPg0KZnJlcXVlbnRsaXN0IG9yIGNsYXNzaWNhbDwvYnI+DQpCYXllc2lhbiA8L2JyPg0KDQpTZWUgYWxzbzoNCkxpa2VsaWhvb2Q6IGh0dHA6Ly9zdHVkZW50cy5icm93bi5lZHUvc2VlaW5nLXRoZW9yeS9iYXNpYy1wcm9iYWJpbGl0eS9pbmRleC5odG1sI2ZpcnN0IDwvYnI+DQpFeHBlY3RhdGlvbjogaHR0cDovL3N0dWRlbnRzLmJyb3duLmVkdS9zZWVpbmctdGhlb3J5L2Jhc2ljLXByb2JhYmlsaXR5L2luZGV4Lmh0bWwjc2Vjb25kIDwvYnI+DQphbmQgRXN0aW1hdGlvbjogaHR0cDovL3N0dWRlbnRzLmJyb3duLmVkdS9zZWVpbmctdGhlb3J5L2Jhc2ljLXByb2JhYmlsaXR5L2luZGV4Lmh0bWwjdGhpcmQgPC9icj4NCg0KV2hlbiB0d28gZXZlbnRzIGFyZSBzYWlkIHRvIGJlIGluZGVwZW5kZW50IG9mIGVhY2ggb3RoZXIsIHdoYXQgdGhpcyBtZWFucyBpcyB0aGF0IHRoZSBwcm9iYWJpbGl0eSB0aGF0IG9uZSBldmVudCBvY2N1cnMgaW4gbm8gd2F5IGFmZmVjdHMgdGhlIHByb2JhYmlsaXR5IG9mIHRoZSBvdGhlciBldmVudCBvY2N1cnJpbmcuIEFuIGV4YW1wbGUgb2YgdHdvIGluZGVwZW5kZW50IGV2ZW50cyBpcyBhcyBmb2xsb3dzOyBzYXkgeW91IHJvbGxlZCBhIGRpZSBhbmQgZmxpcHBlZCBhIGNvaW4uIDwvcD4gDQoNCjxoMz4xNS4xLjIgQ29uZGl0aW9uYWwgUHJvYmFiaWxpdHk8L2gzPg0KPGgzPjE1LjEuMyBJbnRlcnNlY3Rpb248L2gzPg0KPGgzPjE1LjEuNCBVbmlvbiA8L2gzPg0KPGgzPjE1LjEuNSBDb21wbGVtZW50PC9oMz4NCg0KU2VlIEFsc286IDwvYnI+DQpTZXQgVGhlb3J5OiBodHRwOi8vc3R1ZGVudHMuYnJvd24uZWR1L3NlZWluZy10aGVvcnkvY29tcG91bmQtcHJvYmFiaWxpdHkvaW5kZXguaHRtbCNmaXJzdCA8L2JyPg0KQ29tYmluYXRvcmljczogaHR0cDovL3N0dWRlbnRzLmJyb3duLmVkdS9zZWVpbmctdGhlb3J5L2NvbXBvdW5kLXByb2JhYmlsaXR5L2luZGV4Lmh0bWwjc2Vjb25kIDwvYnI+DQpDb25kaXRpb25hbCBQcm9iYWJpbGl0eTogaHR0cDovL3N0dWRlbnRzLmJyb3duLmVkdS9zZWVpbmctdGhlb3J5L2NvbXBvdW5kLXByb2JhYmlsaXR5L2luZGV4Lmh0bWwjdGhpcmQgPC9icj4NCjwvYnI+DQoNCjxoMj4gUmFuZG9tIFZhcmlhYmxlcyBhbmQgUHJvYmFiaWxpdHkgRGlzdHJpYnV0aW9ucyA8L2gyPg0KPGgzPjE1LjIuMSBSZWFsaXphdGlvbnM8L2gzPg0KPGgzPjE1LjIuMiBEaXNjcmV0ZSBSYW5kb20gVmFyaWFibGVzPC9oMz4NCmN1bXVsYXRpdmUgcHJvYmFiaWxpdHkgZGlzdHJpYnV0aW9ucyBvZiBkaXNjcmV0ZSByYW5kb20gdmFyaWFibGVzLg0KTWVhbiBhbmQgVmFyaWFuY2Ugb2YgYSBkaXNjcmV0ZSByYW5kb20gdmFyaWFibGUNCg0KPGgzPjE1LjIuMyBDb250aW51b3VzIFJhbmRvbSBWYXJpYWJsZXM8L2gzPg0KQ3VtbXVsYXRpdmUgUHJvYmFiaWxpdHkgZGlzdHJpYnV0aW9ucyBvZiBjb250aW51b3VzIFJhbmRvbSBWYXJpYWJsZXMNCk1lYW4gYW5kIFZhcmlhbmNlIG9mIGEgQ29udGludW91cyBSYW5kb20gVmFyaWFibGUNCg0KPGgzPjE1LjIuNCBTaGFwZSwgU2tldyBhbmQgTW9kYWxpdHk8L2gzPg0KDQoNCg==