n_sim = 1000
n_trees = 10
MP = matrix(nrow=n_sim,ncol=3)
RP = matrix(nrow=n_sim,ncol=3)
p = proc.time()
for(i in 1:n_sim){
est = sim_est(n_trees=n_trees, rec_method=1, seed=i)
RP[i,] = est$real
MP[i,] = est$est
}
print(proc.time()-p)
## user system elapsed
## 849.764 0.368 850.412
par_est_vis(P=MP,par=1,PR=RP)
par_est_vis(P=MP,par=2,PR=RP)
par_est_vis(P=MP,par=3,PR=RP)
## [1] "0.004 proportion of data was excluded for vizualization purposes"
summary(MP)
## V1 V2 V3
## Min. :0.3655 Min. :0.03966 Min. :2.800e+01
## 1st Qu.:0.7143 1st Qu.:0.07969 1st Qu.:4.000e+01
## Median :0.7840 Median :0.09009 Median :4.100e+01
## Mean :0.7891 Mean :0.09231 Mean :4.255e+10
## 3rd Qu.:0.8630 3rd Qu.:0.10266 3rd Qu.:4.200e+01
## Max. :1.2343 Max. :0.21601 Max. :4.255e+13
parallel:
no_cores <- detectCores()- 1
cl <- makeCluster(no_cores)
registerDoParallel(cl)
n_sim = 1000
n_trees = 10
MP = matrix(nrow=n_sim,ncol=3)
RP = matrix(nrow=n_sim,ncol=3)
p = proc.time()
ests <- foreach(i = 1:n_sim, .combine=data.frame,.packages='dmea') %dopar% sim_est(n_trees=n_trees,rec_method=1,seed=i)
print(proc.time()-p)
## user system elapsed
## 2.628 0.064 323.851
for (i in 1:n_sim){
RP[i,] = ests[,(2*i-1)]
MP[i,] = ests[,2*i]
}
stopCluster(cl)
par_est_vis(P=MP,par=1,PR=RP)
par_est_vis(P=MP,par=2,PR=RP)
par_est_vis(P=MP,par=3,PR=RP)
## [1] "0.004 proportion of data was excluded for vizualization purposes"
summary(MP)
## V1 V2 V3
## Min. :0.3655 Min. :0.03966 Min. :2.800e+01
## 1st Qu.:0.7143 1st Qu.:0.07969 1st Qu.:4.000e+01
## Median :0.7840 Median :0.09009 Median :4.100e+01
## Mean :0.7891 Mean :0.09231 Mean :4.255e+10
## 3rd Qu.:0.8630 3rd Qu.:0.10266 3rd Qu.:4.200e+01
## Max. :1.2343 Max. :0.21601 Max. :4.255e+13
now for sets of 100 trees
no_cores <- detectCores()- 1
cl <- makeCluster(no_cores)
registerDoParallel(cl)
n_sim = 1000
n_trees = 100
MP = matrix(nrow=n_sim,ncol=3)
RP = matrix(nrow=n_sim,ncol=3)
p = proc.time()
ests <- foreach(i = 1:n_sim, .combine=data.frame,.packages='dmea') %dopar% sim_est(n_trees=n_trees,rec_method=1,seed=i)
print(proc.time()-p)
## user system elapsed
## 2.536 0.064 2576.031
for (i in 1:n_sim){
RP[i,] = ests[,(2*i-1)]
MP[i,] = ests[,2*i]
}
stopCluster(cl)
par_est_vis(P=MP,par=1,PR=RP)
par_est_vis(P=MP,par=2,PR=RP)
par_est_vis(P=MP,par=3,PR=RP)
## [1] "0.004 proportion of data was excluded for vizualization purposes"
summary(MP)
## V1 V2 V3
## Min. :0.3911 Min. :0.04522 Min. : 33.14
## 1st Qu.:0.6787 1st Qu.:0.07975 1st Qu.: 40.14
## Median :0.7366 Median :0.09039 Median : 41.53
## Mean :0.7362 Mean :0.09228 Mean : 41.57
## 3rd Qu.:0.7950 3rd Qu.:0.10241 3rd Qu.: 42.90
## Max. :1.0197 Max. :0.21560 Max. :100.91