===================================================================
REGRESSZIÓK
===================================================================
Az online és offline kirekesztő és áldozati szerepek kialakulására ható tényezők vizsgálatára négy regressziós modellt hoztunk létre 3-3 lépésben.
A négy függő változó eredetileg az online és offline áldozattá és elkövetővé válás gyakoriságát tartalmazta, de ezek eloszlása annyira ferde volt (a megfigyelések túlnyomó többsége 0 értéket vett fel, lásd: a “plot_…” ábrákat), hogy a változók bináris kódolása és ezzel együtt bináris logisztikus regressziós modellek futtatása mellett döntöttünk. A becsült értékek (Estimates) tehát az éppen vizsgált szerep elmúlt négy hónapban történő betöltéséhez tartozó esély természetes alapú logaritmusát mutatják. Az utolsó oszlopban (Pr(>|z|)) pedig a becsült értékekhez tartozó szignifikancia látható.
Az adatbázis megtisztĂtása után egy 796 elemű mintát kaptunk, amelyen mind a 4 fĂĽggĹ‘ változĂł vizsgálatára 3, ugyan olyan logika mentĂ©n felĂ©pĂtett modellt alkottunk meg. (Az adatbázisban csak azok a tanulĂłk maradtak (1) Ă©rtelmezhetĹ‘ választ adtak marra a kĂ©rdĂ©sre, hogy rĂ©szt vesznek-e a Tabby kutatásban, akik azt vallották, hogy Magyarországon Ă©lnek Ă©s akiknek legalább egy online közössĂ©gben van felhasználĂłi profiljuk.
Az elsĹ‘ lĂ©pĂ©sben az Ă©letkor, a nem, az iskolai osztály, a szubjektĂv tanulĂłi teljesĂtmĂ©ny, a szubjektĂv iskolai nĂ©pszerűsĂ©g, a szubjektĂv online nĂ©pszerűsĂ©g, az online barátok száma, Ă©s az kerĂĽlt be a modellbe, hogy a tanulĂł szĂĽlei Ă©s / vagy tanárai milyen gyakran beszĂ©lgetnek a diákkal az internet-használat veszĂ©lyeirĹ‘l. A második modellben bekerĂĽlt az Ă©pp vizsgált online / offline szerepnek az offline / online ellentĂ©t párja, mint magyarázĂł változĂł. Ezzel azt vizsgáljuk, hogy az online Ă©s az offline bántalmazás / áldozattá válás mennyire fĂĽgg össze egymással. A harmadik modellben pedig a vizsgált szerepnek az online Ă©s offline ellentĂ©tes szerep párja kerĂĽl be a modellbe. Tehát pl.: az elsĹ‘ esetben a az offline bullying áldozatává válás mĂ©rtĂ©ke mellĂ© bekerĂĽl az online Ă©s offline kirekesztĹ‘ szerep vizsgálata magyarázĂł változĂłkĂ©nt, ezzel azt vizsgálva, hogy a bántalmazĂł Ă©s bántalmazott szerepek mennyire fĂĽggenek össze egymással. Ezen összefĂĽggĂ©sek vizsgálatának lĂ©tjogosultságát elĹ‘re vetĂti, hogy a nĂ©gy vizsgált szerep tĂpus mindegyike (ha nem is tĂşl erĹ‘sen, de) szignifikánsan összefĂĽgg egymással (lásd: “plot_cor”).
1.1 - 1.3 Az elsĹ‘ három modell fĂĽggĹ‘ változĂłja az offline bullying áldozatává válás mĂ©rtĂ©ke. Az elsĹ‘ (1.1) modell futtatás egyetlen emlĂtĂ©sre mĂ©ltĂł eredmĂ©nye, hogy az iskolai önbevallás alapján mĂ©rt nĂ©pszerűsĂ©g növekedĂ©sĂ©vel nĹ‘ az offline áldozattá válás esĂ©lye. A második (1.2) modell esetĂ©ben, mikor kontrollálunk az online áldozati szerep betöltĂ©sĂ©re is, a fenti hatás eltűnik, ez utĂłbbi viszont kiemelkedĹ‘en növeli az offline Ă©s bántalmazás esĂ©lyĂ©t; a kĂ©t tĂ©rben törtĂ©nĹ‘ áldozati szerep tehát összefĂĽgg egymással. A harmadik, legteljesebb (1.3) modell tanĂşsága szerint pedig az iskolai nĂ©pszerűsĂ©g, az online áldozati szerep betöltĂ©se Ă©s az offline bullying magatartás növeli szignifikánsan az offline áldozati szerep betöltĂ©sĂ©nek esĂ©lyĂ©t. EbbĹ‘l tehát az következik, hogy azok akiket online bátalmazás Ă©r, nagyobb esĂ©llyel lesznek offline is bántalmazva Ă©s ugyanakkor Ĺ‘k maguk is nagyobb esĂ©llyel követnek el offline bántalmazást.
2.1 - 2.3 Az online áldozati szerep kialakulását vizsgálĂł modellek az elĹ‘zĹ‘ekhez modellekhez kĂ©pest többet elárulnak a szerep kialakulásának lehetsĂ©ges okairĂłl. Az elsĹ‘ (2.1) modell szerint az online tĂ©rben Ă©szlelt nĂ©pszerűsĂ©g Ă©s az online tĂ©rben eltöltött idĹ‘ szignifikánsan csökkenti a szerep kialakulásának esĂ©lyĂ©t, mĂg az online barátok számnak növekedĂ©sĂ©vel szignifikánsan nĹ‘ az online áldozati szerep kialakulásának esĂ©lye. Ennek kialakulásának esĂ©lyĂ©t az offline áldozati szerep tovább növeli (szignifikáns mĂ©rtĂ©kben), miközben a fent emlĂtett hatások lĂ©nyegĂ©ben változatlanok maradnak (2.2) A harmadik modell esetĂ©ben (2.3) pedig azt láthatjuk, hogy a 2.1-es Ă©s 2.2-es modellekben tapasztalt hatások bár valamelyest gyengĂ©bben, de továbbra is szignifikánsak maradnak, Ă©s hozzájuk csatlakozik az online tĂ©rben törtĂ©nĹ‘ bántalmazás rendkĂvĂĽl erĹ‘s pozitĂv hatása, amely ez esetben is arra utal (mintegy az (1.1-1.3)-as modellek megerĹ‘sĂtĂ©sekĂ©nt), hogy az online bántalmazĂł Ă©s bántalmazott szerepek is erĹ‘sen összefĂĽggenek egymással.
3.1-3.3 Ami az offline bántalmazĂł szerepek kialakulásának lehetsĂ©ges okait illet, azt fontos kiemelni, hogy az iskolai nĂ©pszerűsĂ©g Ă©s az online töltött idĹ‘ negatĂv hatásán tĂşl a legerĹ‘sebb hatása a nemnek van. MĂ©gpedig azt mondhatjuk, hogy az offline bántalmazást elkövetĹ‘ szemĂ©lyek nagyrĂ©szt fiĂşk. EgĂ©szen pontosan azt mutatják az eredmĂ©nyek, hogy ha az illetĹ‘ lány, akkor annak az esĂ©lye, hogy offline bántalmazást kövessen el, 0,38-szor kissebb, mint ha az illetĹ‘ fiĂş (3.1). A második (3.2) modell alapján mindezt annyival egĂ©szĂthetjĂĽk ki, hogy az offline bántalmazás elkövetĂ©sĂ©nek esĂ©lye nagy mártákben Ă©s szignifikánsan növekszik akkor, ha az illetĹ‘ online is bántalmazĂł szerepet tölt be. A harmadik (3.3) modell szerint pedig mindezeken tĂşl, mindennĂ©l erĹ‘sebb hatása annak van az online bántalmazĂł szerep kialakulására, ha az illetĹ‘t offline bántalmazzák.
4.1-4.3 Az elsĹ‘ modell szerint (4.1) azt láthatjuk, hogy online bántalmazĂł szerep kialakulását ugyan azon tĂ©nyezĹ‘k befolyásolják, mint amit a fenti offline esetben tapasztaltunk (3.1). Tehát az iskolai nĂ©pszerűsĂ©g Ă©s az online töltött idĹ‘ negatĂv hatásán tĂşl a legerĹ‘sebb hatása a nemnek van. Ugyan Ăşgy erĹ‘sen hat a szerep kialakulására, ha az illetĹ‘ offline is bántalmazĂł (4.2). A harmadik (4.3) modell esetĂ©ben viszont itt azt láthatjuk, hogy az offline áldozati szerep nem, az online áldozati szerep viszont erĹ‘sen Ă©s szignifikánsan növeli az online bántalmazĂł szerep kialakulását.
Ezt összevetve a (3.3)-as modellel azt mondhatjuk, hogy az áldozati Ă©s elkövetĹ‘ szerepek bár nagyon erĹ‘sen összefĂĽggnek egymással de a kĂ©t online szerep egymással Ă©s a kĂ©t offline szerep is egymással van kölcsönösen erĹ‘s kapcsolatban, mĂg az online Ă©s offline szerepek kevĂ©sbĂ© hatnak egymásra.
# <code R>
# ===================================================================
#
# TABBY II.
#
# Descriptives
# Regressions
# Factors
# Aug / 19 /2014
#
# ===================================================================
# Description comes here
# ===================================================================
# (0) LIBRARY AND WD
# ===================================================================
# (0.1) libraries
library(foreign)
library(PerformanceAnalytics)
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Loading required package: xts
##
## Attaching package: 'PerformanceAnalytics'
##
## The following object is masked from 'package:graphics':
##
## legend
library(ggplot2)
# (0.2) working directory
# rm(list=ls())
# whoareyou <- "NB"
# path <- paste0("c:\\Users\\",whoareyou,"\\Dropbox\\My_Cx_Ray\\spar\\spar_orgchart_dashboard_analysis\\")
# setwd(path)
rm(list=ls())
whoareyou <- "nb"
path <- paste0("/home/",whoareyou,"/Dropbox/TABBY/TABBY II/elemzese_2014_08/") # !!! Spar library !!!
setwd(path)
# ===================================================================
# (1) DATA PREPARATION
# ===================================================================
# global setting
options(stringsAsFactors = F)
options(warn=-1)
d <- read.spss("data_140803.sav", to.data.frame = T, use.value.labels = F)
## re-encoding from CP1250
# ===================================================================
# (2) DESCaRIPTIVES
# ===================================================================
# (2.1) controls
table(d$q1)
##
## 0 1
## 69 834
table(d$country)
##
## 2 3 4 9
## 1 1 893 6
table(d$profile)
##
## 0 1 2
## 48 439 417
# restrict the data -> df
df <- d[d$q1 == 1, ] # ...
df <- df[df$profile != 0, ] # does have a Tabby profile
df <- df[df$country == 4, ] # Hungarian
# (2.2) dependents
# offline
table(df$victim_b)
##
## 0 1 2 3 4
## 659 75 30 9 20
x <- df$victim_b
h<-hist(x, breaks=10, col="red", xlab="offline victim",
main="Histogram: offline victim")
xfit<-seq(min(x, na.rm=T),max(x, na.rm=T),length=40)
yfit<-dnorm(xfit,mean=mean(x, na.rm=T),sd=sd(x, na.rm=T))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)
table(df$bully_b)
##
## 0 1 2 3 4
## 691 62 14 14 12
x <- df$bully_b
h<-hist(x, breaks=10, col="red", xlab="offline bully",
main="Histogram: offline bully")
xfit<-seq(min(x, na.rm=T),max(x, na.rm=T),length=40)
yfit<-dnorm(xfit,mean=mean(x, na.rm=T),sd=sd(x, na.rm=T))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)
# online
table(df$victim_cb_score)
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 17
## 524 150 62 18 16 8 7 1 1 1 1 1 1 1 1
x <- df$victim_cb_score
h<-hist(x, breaks=10, col="red", xlab="online victim",
main="Histogram: online victim")
xfit<-seq(min(x, na.rm=T),max(x, na.rm=T),length=40)
yfit<-dnorm(xfit,mean=mean(x, na.rm=T),sd=sd(x, na.rm=T))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)
table(df$bully_cb_score)
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 20
## 501 141 51 19 46 14 9 1 1 2 1 2 1 1 1 1
x <- df$bully_cb_score
h<-hist(x, breaks=10, col="red", xlab="online bully",
main="Histogram: online bully")
xfit<-seq(min(x, na.rm=T),max(x, na.rm=T),length=40)
yfit<-dnorm(xfit,mean=mean(x, na.rm=T),sd=sd(x, na.rm=T))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)
# recoding tue to the skewed destribution
df$victim_b[df$victim_b != 0] <- 1
df$bully_b[df$bully_b != 0] <- 1
df$victim_cb_score[df$victim_cb_score != 0] <- 1
df$bully_cb_score[df$bully_cb_score != 0] <- 1
# pairwise correlations:
cor(df$victim_b, df$bully_b, use = "na.or.complete", method = "spearman")
## [1] 0.269
cor(df$victim_cb_score, df$bully_cb_score, use = "na.or.complete", method = "spearman")
## [1] 0.2608
cor(df$victim_b, df$victim_cb_score, use = "na.or.complete", method = "spearman")
## [1] 0.3024
cor(df$bully_b, df$bully_cb_score, use = "na.or.complete", method = "spearman")
## [1] 0.2347
# group correlation
# Correlation matrix with p-values. See http://goo.gl/nahmV for documentation of this function
cor.prob <- function (X, dfr = nrow(X) - 2) {
R <- cor(X, use="pairwise.complete.obs", method = "spearman")
above <- row(R) < col(R)
r2 <- R[above]^2
Fstat <- r2 * dfr/(1 - r2)
R[above] <- 1 - pf(Fstat, 1, dfr)
R[row(R) == col(R)] <- NA
R
}
# Use this to dump the cor.prob output to a 4 column matrix
# with row/column indices, correlation, and p-value.
# See StackOverflow question: http://goo.gl/fCUcQ
flattenSquareMatrix <- function(m) {
if( (class(m) != "matrix") | (nrow(m) != ncol(m))) stop("Must be a square matrix.")
if(!identical(rownames(m), colnames(m))) stop("Row and column names must be equal.")
ut <- upper.tri(m)
data.frame(i = rownames(m)[row(m)[ut]],
j = rownames(m)[col(m)[ut]],
cor=t(m)[ut],
p=m[ut])
}
cor_data <- cbind(df$victim_b, df$bully_b, df$victim_cb_score, df$bully_cb_score)
colnames(cor_data) <- c("victim_b", "bully_b", "victim_cb_score", "bully_cb_score")
cor_data[,1] <- as.numeric(cor_data[,1])
cor_data[,2] <- as.numeric(cor_data[,2])
cor_data[,3] <- as.numeric(cor_data[,3])
cor_data[,4] <- as.numeric(cor_data[,4])
# correlation matrix
cor(cor_data)
## victim_b bully_b victim_cb_score bully_cb_score
## victim_b 1 NA NA NA
## bully_b NA 1 NA NA
## victim_cb_score NA NA 1 NA
## bully_cb_score NA NA NA 1
# correlation matrix with p-values
cor.prob(cor_data)
## victim_b bully_b victim_cb_score bully_cb_score
## victim_b NA 1.155e-14 0.0000000 2.777e-02
## bully_b 0.2690 NA 0.0000122 2.017e-11
## victim_cb_score 0.3024 1.543e-01 NA 7.616e-14
## bully_cb_score 0.0780 2.347e-01 0.2608153 NA
# "flatten" that table
flattenSquareMatrix(cor.prob(cor_data))
## i j cor p
## 1 victim_b bully_b 0.2690 1.155e-14
## 2 victim_b victim_cb_score 0.3024 0.000e+00
## 3 bully_b victim_cb_score 0.1543 1.220e-05
## 4 victim_b bully_cb_score 0.0780 2.777e-02
## 5 bully_b bully_cb_score 0.2347 2.017e-11
## 6 victim_cb_score bully_cb_score 0.2608 7.616e-14
# plot the data
chart.Correlation(cor_data)
# (2.3) explanatories
table(df$grade) # everything was excluded beyond 1-6 range
##
## 1 2 3 4 5 6
## 217 168 136 64 24 184
table(df$age) # everything was excluded beyond 10-19 range
##
## 10 11 12 13 14 15 16 16.5 17 18 19
## 5 25 40 14 57 222 213 1 135 63 8
table(df$female) # regular dummy
##
## 0 1
## 321 472
table(df$online_friends) # everything was excluded beyond 0-1500 range
##
## 0 1 2 5 10 15 20 22 23 24 25 27 29 30 34
## 3 1 1 1 2 2 1 1 1 2 1 1 1 4 2
## 35 40 45 47 50 60 64 70 72 73 78 80 87 90 92
## 1 6 1 1 11 1 1 3 1 1 2 6 1 4 1
## 93 96 97 100 110 118 120 125 126 128 129 130 132 142 145
## 2 1 1 27 3 1 8 2 1 1 1 7 2 1 1
## 147 150 152 159 160 165 170 180 183 185 186 190 192 193 200
## 2 16 1 1 2 3 3 2 2 1 1 1 1 1 28
## 210 215 216 220 221 230 238 240 245 250 251 255 256 258 260
## 1 1 2 1 1 3 1 1 1 19 2 1 1 1 2
## 265 266 268 270 272 275 280 288 290 291 293 298 300 310 312
## 2 1 1 4 1 1 1 1 1 1 1 2 47 1 1
## 318 320 323 327 330 333 335 343 344 348 350 353 356 358 362
## 1 3 1 1 2 1 1 1 1 2 19 1 1 1 1
## 364 365 366 370 371 380 381 388 393 400 412 415 418 420 423
## 1 3 2 3 2 3 1 1 1 44 1 1 1 4 1
## 425 429 430 435 444 448 450 464 469 471 479 487 490 491 493
## 1 1 3 1 1 1 8 1 1 1 1 1 3 1 1
## 500 503 505 510 513 519 520 521 526 529 530 534 536 539 540
## 53 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 550 555 560 561 565 567 575 578 580 600 601 615 620 625 628
## 4 2 2 1 1 1 1 1 2 42 1 1 2 1 1
## 630 640 641 642 650 658 660 666 668 670 680 685 689 690 700
## 2 1 1 1 6 1 1 3 1 1 1 1 1 1 29
## 705 707 709 725 736 750 760 778 780 788 800 820 830 840 847
## 1 1 1 1 1 6 2 1 1 2 34 2 1 1 1
## 850 853 882 892 898 899 900 906 920 932 943 946 956 967 978
## 3 1 1 3 1 1 8 1 1 1 1 1 1 2 1
## 990 993 1000 1002 1010 1014 1018 1030 1034 1100 1109 1118 1131 1200 1228
## 1 1 31 1 1 1 2 1 1 4 1 1 1 9 1
## 1234 1245 1260 1261 1300 1353 1400 1431 1434 1450 1469 1500
## 1 1 1 1 3 1 3 1 1 1 1 11
table(df$q20)
##
## 0 1 2 3 4
## 25 200 263 174 131
df$pop_sch <- df$q20 # popularity at school
df$pop_sch[df$q20 == 0] <- 5
df$pop_sch[df$q20 == 1] <- 4
df$pop_sch[df$q20 == 2] <- 3
df$pop_sch[df$q20 == 3] <- 2
df$pop_sch[df$q20 == 4] <- 1
table(df$pop_sch)
##
## 1 2 3 4 5
## 131 174 263 200 25
table(df$q21)
##
## 0 1 2 3 4
## 55 273 289 119 57
df$pop_cb <- df$q21 # popularity online
df$pop_cb[df$q21 == 0] <- 5
df$pop_cb[df$q21 == 1] <- 4
df$pop_cb[df$q21 == 2] <- 3
df$pop_cb[df$q21 == 3] <- 2
df$pop_cb[df$q21 == 4] <- 1
table(df$pop_cb)
##
## 1 2 3 4 5
## 57 119 289 273 55
table(df$q23)
##
## 1 2 3 4 5
## 223 368 110 66 26
df$parent_netsec <- df$q23 # talking about net security with parents
df$parent_netsec[df$q23 == 1] <- 5
df$parent_netsec[df$q23 == 2] <- 4
df$parent_netsec[df$q23 == 3] <- 3
df$parent_netsec[df$q23 == 4] <- 2
df$parent_netsec[df$q23 == 5] <- 1
table(df$parent_netsec)
##
## 1 2 3 4 5
## 26 66 110 368 223
table(df$q24)
##
## 1 2 3 4 5
## 238 377 108 48 22
df$teacher_netsec <- df$q24 # talking about net security with teachers
df$teacher_netsec[df$q24 == 1] <- 5
df$teacher_netsec[df$q24 == 2] <- 4
df$teacher_netsec[df$q24 == 3] <- 3
df$teacher_netsec[df$q24 == 4] <- 2
df$teacher_netsec[df$q24 == 5] <- 1
table(df$teacher_netsec)
##
## 1 2 3 4 5
## 22 48 108 377 238
table(df$q22)
##
## 0 1 2 3 4
## 196 419 132 30 16
df$time_online <- df$q22 # how many hours online (categorical)
df$time_online[df$q22 == 0] <- 5
df$time_online[df$q22 == 1] <- 4
df$time_online[df$q22 == 2] <- 3
df$time_online[df$q22 == 3] <- 2
df$time_online[df$q22 == 4] <- 1
table(df$time_online)
##
## 1 2 3 4 5
## 16 30 132 419 196
table(df$q25)
##
## 1 2 3 4 5
## 10 29 411 268 75
df$performance <- df$q25 # self-declared school performance
df$performance[df$q25 == 1] <- 5
df$performance[df$q25 == 2] <- 4
df$performance[df$q25 == 3] <- 3
df$performance[df$q25 == 4] <- 2
df$performance[df$q25 == 5] <- 1
table(df$performance)
##
## 1 2 3 4 5
## 75 268 411 29 10
# ===================================================================
# (3) REGRESSIONS
# ===================================================================
# (3.1) victim off-line
# (1.1)
fit11 <- glm(df$victim_b ~
df$age + df$female + df$grade + df$performance
+ df$pop_sch + df$pop_cb + df$online_friends
+ df$time_online + df$parent_netsec + df$teacher_netsec,
family = binomial)
summary(fit11)
##
## Call:
## glm(formula = df$victim_b ~ df$age + df$female + df$grade + df$performance +
## df$pop_sch + df$pop_cb + df$online_friends + df$time_online +
## df$parent_netsec + df$teacher_netsec, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.996 -0.622 -0.560 -0.498 2.231
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.066995 1.227684 0.05 0.956
## df$age -0.095659 0.060918 -1.57 0.116
## df$female1 0.127714 0.213114 0.60 0.549
## df$grade 0.048507 0.052960 0.92 0.360
## df$performance -0.013142 0.136097 -0.10 0.923
## df$pop_sch 0.228572 0.113273 2.02 0.044 *
## df$pop_cb -0.201768 0.120464 -1.67 0.094 .
## df$online_friends 0.000149 0.000341 0.44 0.662
## df$time_online -0.113274 0.122146 -0.93 0.354
## df$parent_netsec -0.008418 0.103742 -0.08 0.935
## df$teacher_netsec -0.007325 0.108488 -0.07 0.946
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 676.91 on 761 degrees of freedom
## Residual deviance: 666.83 on 751 degrees of freedom
## (34 observations deleted due to missingness)
## AIC: 688.8
##
## Number of Fisher Scoring iterations: 4
# (1.2)
fit12 <- glm(df$victim_b ~
df$age + df$female + df$grade + df$performance
+ df$pop_sch + df$pop_cb + df$online_friends
+ df$time_online + df$parent_netsec + df$teacher_netsec
+ df$victim_cb_score,
family = binomial)
summary(fit12)
##
## Call:
## glm(formula = df$victim_b ~ df$age + df$female + df$grade + df$performance +
## df$pop_sch + df$pop_cb + df$online_friends + df$time_online +
## df$parent_netsec + df$teacher_netsec + df$victim_cb_score,
## family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.200 -0.546 -0.427 -0.363 2.519
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.027674 1.285038 -0.80 0.42
## df$age -0.094713 0.063903 -1.48 0.14
## df$female1 0.169889 0.223532 0.76 0.45
## df$grade 0.049161 0.055680 0.88 0.38
## df$performance -0.016133 0.142311 -0.11 0.91
## df$pop_sch 0.183038 0.118349 1.55 0.12
## df$pop_cb -0.107207 0.125724 -0.85 0.39
## df$online_friends -0.000201 0.000363 -0.55 0.58
## df$time_online -0.014656 0.129896 -0.11 0.91
## df$parent_netsec 0.042438 0.107210 0.40 0.69
## df$teacher_netsec -0.066606 0.114664 -0.58 0.56
## df$victim_cb_score 1.599441 0.216093 7.40 1.3e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 676.91 on 761 degrees of freedom
## Residual deviance: 609.08 on 750 degrees of freedom
## (34 observations deleted due to missingness)
## AIC: 633.1
##
## Number of Fisher Scoring iterations: 5
# (1.3)
fit13 <- glm(df$victim_b ~
df$age + df$female + df$grade + df$performance
+ df$pop_sch + df$pop_cb + df$online_friends
+ df$time_online + df$parent_netsec + df$teacher_netsec
+ df$victim_cb_score
+ df$bully_b + df$bully_cb_score,
family = binomial)
summary(fit13)
##
## Call:
## glm(formula = df$victim_b ~ df$age + df$female + df$grade + df$performance +
## df$pop_sch + df$pop_cb + df$online_friends + df$time_online +
## df$parent_netsec + df$teacher_netsec + df$victim_cb_score +
## df$bully_b + df$bully_cb_score, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.734 -0.592 -0.400 -0.317 2.724
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.089363 1.359915 -1.54 0.124
## df$age -0.075424 0.066259 -1.14 0.255
## df$female1 0.290419 0.239454 1.21 0.225
## df$grade 0.066716 0.057164 1.17 0.243
## df$performance -0.034594 0.145390 -0.24 0.812
## df$pop_sch 0.266396 0.124867 2.13 0.033 *
## df$pop_cb -0.142871 0.131106 -1.09 0.276
## df$online_friends -0.000142 0.000383 -0.37 0.711
## df$time_online 0.086435 0.136998 0.63 0.528
## df$parent_netsec 0.019268 0.110467 0.17 0.862
## df$teacher_netsec -0.058164 0.119773 -0.49 0.627
## df$victim_cb_score 1.597727 0.229033 6.98 3.0e-12 ***
## df$bully_b 1.502440 0.288301 5.21 1.9e-07 ***
## df$bully_cb_score -0.198204 0.244206 -0.81 0.417
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 673.27 on 760 degrees of freedom
## Residual deviance: 577.16 on 747 degrees of freedom
## (35 observations deleted due to missingness)
## AIC: 605.2
##
## Number of Fisher Scoring iterations: 5
# (3.2) victim online-line
# (2.1)
fit21 <- glm(df$victim_cb_score ~
df$age + df$female + df$grade + df$performance
+ df$pop_sch + df$pop_cb + df$online_friends
+ df$time_online + df$parent_netsec + df$teacher_netsec,
family = binomial)
summary(fit21)
##
## Call:
## glm(formula = df$victim_cb_score ~ df$age + df$female + df$grade +
## df$performance + df$pop_sch + df$pop_cb + df$online_friends +
## df$time_online + df$parent_netsec + df$teacher_netsec, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.550 -0.890 -0.722 1.263 2.009
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.653352 1.015623 0.64 0.5200
## df$age -0.019595 0.051062 -0.38 0.7012
## df$female1 -0.016637 0.170473 -0.10 0.9223
## df$grade 0.007262 0.043265 0.17 0.8667
## df$performance -0.029679 0.108506 -0.27 0.7845
## df$pop_sch 0.169968 0.090744 1.87 0.0611 .
## df$pop_cb -0.295505 0.097125 -3.04 0.0023 **
## df$online_friends 0.000873 0.000267 3.28 0.0011 **
## df$time_online -0.276218 0.099098 -2.79 0.0053 **
## df$parent_netsec -0.135693 0.084575 -1.60 0.1086
## df$teacher_netsec 0.153578 0.089440 1.72 0.0860 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 960.05 on 761 degrees of freedom
## Residual deviance: 916.35 on 751 degrees of freedom
## (34 observations deleted due to missingness)
## AIC: 938.4
##
## Number of Fisher Scoring iterations: 4
# (2.2)
fit22 <- glm(df$victim_cb_score ~
df$age + df$female + df$grade + df$performance
+ df$pop_sch + df$pop_cb + df$online_friends
+ df$time_online + df$parent_netsec + df$teacher_netsec
+ df$victim_b,
family = binomial)
summary(fit22)
##
## Call:
## glm(formula = df$victim_cb_score ~ df$age + df$female + df$grade +
## df$performance + df$pop_sch + df$pop_cb + df$online_friends +
## df$time_online + df$parent_netsec + df$teacher_netsec + df$victim_b,
## family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.995 -0.822 -0.642 1.016 2.121
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.012366 1.063988 0.01 0.991
## df$age 0.004697 0.053469 0.09 0.930
## df$female1 -0.049826 0.177638 -0.28 0.779
## df$grade -0.004944 0.045234 -0.11 0.913
## df$performance -0.029988 0.113218 -0.26 0.791
## df$pop_sch 0.128371 0.093663 1.37 0.171
## df$pop_cb -0.271488 0.100738 -2.69 0.007 **
## df$online_friends 0.000914 0.000279 3.28 0.001 **
## df$time_online -0.272370 0.104245 -2.61 0.009 **
## df$parent_netsec -0.140333 0.088387 -1.59 0.112
## df$teacher_netsec 0.165785 0.092817 1.79 0.074 .
## df$victim_b 1.591562 0.215189 7.40 1.4e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 960.05 on 761 degrees of freedom
## Residual deviance: 858.72 on 750 degrees of freedom
## (34 observations deleted due to missingness)
## AIC: 882.7
##
## Number of Fisher Scoring iterations: 4
# (2.3)
fit23 <- glm(df$victim_cb_score ~
df$age + df$female + df$grade + df$performance
+ df$pop_sch + df$pop_cb + df$online_friends
+ df$time_online + df$parent_netsec + df$teacher_netsec
+ df$victim_b
+ df$bully_b + df$bully_cb_score,
family = binomial)
summary(fit23)
##
## Call:
## glm(formula = df$victim_cb_score ~ df$age + df$female + df$grade +
## df$performance + df$pop_sch + df$pop_cb + df$online_friends +
## df$time_online + df$parent_netsec + df$teacher_netsec + df$victim_b +
## df$bully_b + df$bully_cb_score, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.919 -0.795 -0.582 0.963 2.283
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.841856 1.108759 -0.76 0.4477
## df$age 0.006557 0.055384 0.12 0.9058
## df$female1 0.206526 0.189724 1.09 0.2764
## df$grade 0.008732 0.046424 0.19 0.8508
## df$performance -0.028949 0.115003 -0.25 0.8013
## df$pop_sch 0.156319 0.096559 1.62 0.1055
## df$pop_cb -0.262570 0.103141 -2.55 0.0109 *
## df$online_friends 0.000766 0.000288 2.66 0.0077 **
## df$time_online -0.179753 0.107846 -1.67 0.0956 .
## df$parent_netsec -0.174436 0.090648 -1.92 0.0543 .
## df$teacher_netsec 0.155052 0.094854 1.63 0.1021
## df$victim_b 1.588540 0.227076 7.00 2.6e-12 ***
## df$bully_b 0.232820 0.273712 0.85 0.3950
## df$bully_cb_score 0.964098 0.186242 5.18 2.3e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 959.27 on 760 degrees of freedom
## Residual deviance: 825.68 on 747 degrees of freedom
## (35 observations deleted due to missingness)
## AIC: 853.7
##
## Number of Fisher Scoring iterations: 4
# (3.3) bully off-line
# (3.1)
fit31 <- glm(df$bully_b ~
df$age + df$female + df$grade + df$performance
+ df$pop_sch + df$pop_cb + df$online_friends
+ df$time_online + df$parent_netsec + df$teacher_netsec,
family = binomial)
summary(fit31)
##
## Call:
## glm(formula = df$bully_b ~ df$age + df$female + df$grade + df$performance +
## df$pop_sch + df$pop_cb + df$online_friends + df$time_online +
## df$parent_netsec + df$teacher_netsec, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.407 -0.545 -0.394 -0.297 2.651
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.24e+00 1.48e+00 1.52 0.12944
## df$age -1.29e-01 7.57e-02 -1.70 0.08903 .
## df$female1 -9.56e-01 2.47e-01 -3.86 0.00011 ***
## df$grade -8.29e-02 6.49e-02 -1.28 0.20153
## df$performance -1.66e-02 1.55e-01 -0.11 0.91437
## df$pop_sch -3.62e-01 1.31e-01 -2.76 0.00577 **
## df$pop_cb 1.07e-01 1.38e-01 0.78 0.43708
## df$online_friends -1.56e-05 3.82e-04 -0.04 0.96738
## df$time_online -4.43e-01 1.32e-01 -3.35 0.00082 ***
## df$parent_netsec 2.06e-01 1.34e-01 1.53 0.12532
## df$teacher_netsec 6.52e-03 1.30e-01 0.05 0.95992
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 553.43 on 761 degrees of freedom
## Residual deviance: 506.57 on 751 degrees of freedom
## (34 observations deleted due to missingness)
## AIC: 528.6
##
## Number of Fisher Scoring iterations: 5
# (3.2)
fit32 <- glm(df$bully_b ~
df$age + df$female + df$grade + df$performance
+ df$pop_sch + df$pop_cb + df$online_friends
+ df$time_online + df$parent_netsec + df$teacher_netsec
+ df$bully_cb_score,
family = binomial)
summary(fit32)
##
## Call:
## glm(formula = df$bully_b ~ df$age + df$female + df$grade + df$performance +
## df$pop_sch + df$pop_cb + df$online_friends + df$time_online +
## df$parent_netsec + df$teacher_netsec + df$bully_cb_score,
## family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.439 -0.525 -0.360 -0.268 2.714
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.055243 1.526958 1.35 0.17831
## df$age -0.147165 0.077727 -1.89 0.05831 .
## df$female1 -0.820828 0.254287 -3.23 0.00125 **
## df$grade -0.081579 0.066062 -1.23 0.21687
## df$performance -0.059329 0.157032 -0.38 0.70557
## df$pop_sch -0.338692 0.131557 -2.57 0.01004 *
## df$pop_cb 0.146648 0.141270 1.04 0.29924
## df$online_friends -0.000299 0.000398 -0.75 0.45222
## df$time_online -0.368656 0.137775 -2.68 0.00746 **
## df$parent_netsec 0.179311 0.135716 1.32 0.18643
## df$teacher_netsec -0.041301 0.132046 -0.31 0.75445
## df$bully_cb_score 0.965861 0.255633 3.78 0.00016 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 549.15 on 760 degrees of freedom
## Residual deviance: 487.23 on 749 degrees of freedom
## (35 observations deleted due to missingness)
## AIC: 511.2
##
## Number of Fisher Scoring iterations: 5
# (3.3)
fit33 <- glm(df$bully_b ~
df$age + df$female + df$grade + df$performance
+ df$pop_sch + df$pop_cb + df$online_friends
+ df$time_online + df$parent_netsec + df$teacher_netsec
+ df$bully_cb_score
+ df$victim_b + df$victim_cb_score,
family = binomial)
summary(fit33)
##
## Call:
## glm(formula = df$bully_b ~ df$age + df$female + df$grade + df$performance +
## df$pop_sch + df$pop_cb + df$online_friends + df$time_online +
## df$parent_netsec + df$teacher_netsec + df$bully_cb_score +
## df$victim_b + df$victim_cb_score, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.613 -0.503 -0.317 -0.212 2.701
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.250529 1.571710 0.80 0.42624
## df$age -0.125147 0.080198 -1.56 0.11865
## df$female1 -0.978792 0.265911 -3.68 0.00023 ***
## df$grade -0.091608 0.068373 -1.34 0.18030
## df$performance -0.026908 0.161385 -0.17 0.86758
## df$pop_sch -0.407908 0.137132 -2.97 0.00293 **
## df$pop_cb 0.216479 0.149493 1.45 0.14759
## df$online_friends -0.000325 0.000403 -0.81 0.42047
## df$time_online -0.378066 0.141163 -2.68 0.00740 **
## df$parent_netsec 0.208122 0.139484 1.49 0.13568
## df$teacher_netsec -0.053641 0.135809 -0.39 0.69286
## df$bully_cb_score 0.889895 0.270046 3.30 0.00098 ***
## df$victim_b 1.511985 0.286354 5.28 1.3e-07 ***
## df$victim_cb_score 0.248228 0.275775 0.90 0.36806
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 549.15 on 760 degrees of freedom
## Residual deviance: 453.68 on 747 degrees of freedom
## (35 observations deleted due to missingness)
## AIC: 481.7
##
## Number of Fisher Scoring iterations: 6
# (3.4) bully on-line
# (4.1)
fit41 <- glm(df$bully_cb_score ~
df$age + df$female + df$grade + df$performance
+ df$pop_sch + df$pop_cb + df$online_friends
+ df$time_online + df$parent_netsec + df$teacher_netsec,
family = binomial)
summary(fit41)
##
## Call:
## glm(formula = df$bully_cb_score ~ df$age + df$female + df$grade +
## df$performance + df$pop_sch + df$pop_cb + df$online_friends +
## df$time_online + df$parent_netsec + df$teacher_netsec, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.099 -0.880 -0.627 1.081 2.131
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.418251 1.054539 0.40 0.69165
## df$age 0.035037 0.053596 0.65 0.51329
## df$female1 -1.016731 0.173257 -5.87 4.4e-09 ***
## df$grade -0.052881 0.044701 -1.18 0.23681
## df$performance 0.072350 0.111993 0.65 0.51826
## df$pop_sch -0.053330 0.091998 -0.58 0.56212
## df$pop_cb -0.173279 0.098816 -1.75 0.07951 .
## df$online_friends 0.000966 0.000275 3.52 0.00044 ***
## df$time_online -0.456300 0.103547 -4.41 1.0e-05 ***
## df$parent_netsec 0.114383 0.090210 1.27 0.20481
## df$teacher_netsec 0.139106 0.090905 1.53 0.12596
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 989.86 on 760 degrees of freedom
## Residual deviance: 879.67 on 750 degrees of freedom
## (35 observations deleted due to missingness)
## AIC: 901.7
##
## Number of Fisher Scoring iterations: 4
# (4.2)
fit42 <- glm(df$bully_cb_score ~
df$age + df$female + df$grade + df$performance
+ df$pop_sch + df$pop_cb + df$online_friends
+ df$time_online + df$parent_netsec + df$teacher_netsec
+ df$bully_b,
family = binomial)
summary(fit42)
##
## Call:
## glm(formula = df$bully_cb_score ~ df$age + df$female + df$grade +
## df$performance + df$pop_sch + df$pop_cb + df$online_friends +
## df$time_online + df$parent_netsec + df$teacher_netsec + df$bully_b,
## family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.369 -0.856 -0.617 1.056 2.161
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.163250 1.074985 -0.15 0.87929
## df$age 0.047474 0.054012 0.88 0.37942
## df$female1 -0.930862 0.175584 -5.30 1.1e-07 ***
## df$grade -0.045454 0.045144 -1.01 0.31400
## df$performance 0.080255 0.113583 0.71 0.47983
## df$pop_sch -0.017606 0.093608 -0.19 0.85082
## df$pop_cb -0.188892 0.099889 -1.89 0.05862 .
## df$online_friends 0.000990 0.000276 3.58 0.00034 ***
## df$time_online -0.416985 0.105061 -3.97 7.2e-05 ***
## df$parent_netsec 0.098855 0.090144 1.10 0.27280
## df$teacher_netsec 0.145113 0.092081 1.58 0.11504
## df$bully_b 0.947466 0.254572 3.72 0.00020 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 989.86 on 760 degrees of freedom
## Residual deviance: 865.55 on 749 degrees of freedom
## (35 observations deleted due to missingness)
## AIC: 889.6
##
## Number of Fisher Scoring iterations: 4
# (4.3)
fit43 <- glm(df$bully_cb_score ~
df$age + df$female + df$grade + df$performance
+ df$pop_sch + df$pop_cb + df$online_friends
+ df$time_online + df$parent_netsec + df$teacher_netsec
+ df$bully_b
+ df$victim_b + df$victim_cb_score,
family = binomial)
summary(fit43)
##
## Call:
## glm(formula = df$bully_cb_score ~ df$age + df$female + df$grade +
## df$performance + df$pop_sch + df$pop_cb + df$online_friends +
## df$time_online + df$parent_netsec + df$teacher_netsec + df$bully_b +
## df$victim_b + df$victim_cb_score, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.161 -0.838 -0.560 0.995 2.247
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.660180 1.108353 -0.60 0.55142
## df$age 0.049694 0.055448 0.90 0.37013
## df$female1 -0.970712 0.180678 -5.37 7.8e-08 ***
## df$grade -0.047858 0.046305 -1.03 0.30136
## df$performance 0.089280 0.116126 0.77 0.44200
## df$pop_sch -0.053806 0.095853 -0.56 0.57457
## df$pop_cb -0.128426 0.102116 -1.26 0.20852
## df$online_friends 0.000848 0.000284 2.99 0.00283 **
## df$time_online -0.387202 0.107967 -3.59 0.00034 ***
## df$parent_netsec 0.128946 0.092019 1.40 0.16113
## df$teacher_netsec 0.123082 0.094207 1.31 0.19138
## df$bully_b 0.863906 0.265976 3.25 0.00116 **
## df$victim_b -0.175956 0.241299 -0.73 0.46588
## df$victim_cb_score 0.963475 0.185976 5.18 2.2e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 989.86 on 760 degrees of freedom
## Residual deviance: 837.90 on 747 degrees of freedom
## (35 observations deleted due to missingness)
## AIC: 865.9
##
## Number of Fisher Scoring iterations: 4