This is just showing how to process the New Zealand baby names spreadsheet provided by the New Zealand Governemnt, and also make streamgraphs, available from github with devtools::install_github(“hrbrmstr/streamgraph”)
download.file("https://smartstart.services.govt.nz/assets/files/Top-baby-names-1954-2016.xlsx", destfile="babynames.xlsx", mode="wb", method="libcurl")
library(readxl)
library(dplyr)
library(streamgraph)
female <- read_excel("~/Desktop/babynames.xlsx",
sheet = "Girls' Names", col_names = FALSE,
skip = 7)
female <- female[1:100,]
male <- read_excel("~/Desktop/babynames.xlsx",
sheet = "Boys' Names", col_names = FALSE,
skip = 7)
male <- male[1:100,]
for (i in 1:62){
female[,(i*3)+2] <- i+1953
}
female$X190 <- 2016
for (i in 1:62){
male[,(i*3)+2] <- i+1953
}
male$X190 <- 2016
names <- 0:62*3 + 3
numbers <- 0:62*3 + 4
years <- 0:62*3 + 5
female_names <- data.frame(name= unlist(female[,names]),
number= unlist(female[,numbers]),
year= unlist(female[,years]),
stringsAsFactors = FALSE)
male_names <- data.frame(name= unlist(male[,names]),
number= unlist(male[,numbers]),
year= unlist(male[,years]),
stringsAsFactors = FALSE)
Streamgraph of female names
female_names %>% streamgraph(key=name, value=number, date=year) %>%
sg_legend(show=TRUE, label="Name: ")
Streamgraph of male names
male_names %>% streamgraph(key=name, value=number, date=year) %>%
sg_legend(show=TRUE, label="Name: ")