The MBI example

The data has 22 variables and it is supposed to load on 3 factors. The details of the problem are in the text. The solutions differ from the Mplus solution in the book a bit and am not sure why.

Model 1

Let us load the problem

library(utils)
library(lavaan)    
## This is lavaan 0.5-22
## lavaan is BETA software! Please report any bugs.
db1 <- read.fwf("https://fhssrsc.byu.edu/Documents/Textbook%20examples/Structural%20Equation%20Modeling%20with%20Mplus%20-%20Barbara%20Byrne/Ch%204/ELEMM1.DAT", c(rep(1,22)))  

##The measurement model diagram can be found in the text
model1 <- '
 F1 =~ V1 + V2 + V3 + V6 + V8 + V13 + V14 + V16 + V20
 F2 =~ V5 + V10 + V11 + V15 + V22
 F3 =~ V4 + V7 + V9 + V12 + V17 + V18 + V19 + V21'

#The first CFA. Robust (MLM) estimation is used as we are not confident about multivariate normality 
fit1 <- cfa(model1, data = db1, meanstructure = TRUE, estimator =  "MLM")
summary(fit1, fit.measures = TRUE)
## lavaan (0.5-22) converged normally after  46 iterations
## 
##   Number of observations                           372
## 
##   Estimator                                         ML      Robust
##   Minimum Function Test Statistic              695.719     567.753
##   Degrees of freedom                               206         206
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.225
##     for the Satorra-Bentler correction
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             3452.269    2911.466
##   Degrees of freedom                               231         231
##   P-value                                        0.000       0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.848       0.865
##   Tucker-Lewis Index (TLI)                       0.830       0.849
## 
##   Robust Comparative Fit Index (CFI)                         0.861
##   Robust Tucker-Lewis Index (TLI)                            0.844
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -12811.043  -12811.043
##   Loglikelihood unrestricted model (H1)     -12463.184  -12463.184
## 
##   Number of free parameters                         69          69
##   Akaike (AIC)                               25760.087   25760.087
##   Bayesian (BIC)                             26030.490   26030.490
##   Sample-size adjusted Bayesian (BIC)        25811.575   25811.575
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.080       0.069
##   90 Percent Confidence Interval          0.073  0.087       0.063  0.075
##   P-value RMSEA <= 0.05                          0.000       0.000
## 
##   Robust RMSEA                                               0.076
##   90 Percent Confidence Interval                             0.069  0.084
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070       0.070
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                           Robust.sem
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   F1 =~                                               
##     V1                1.000                           
##     V2                0.887    0.040   22.361    0.000
##     V3                1.021    0.053   19.284    0.000
##     V6                0.764    0.070   10.959    0.000
##     V8                1.143    0.059   19.340    0.000
##     V13               1.017    0.062   16.318    0.000
##     V14               0.848    0.058   14.564    0.000
##     V16               0.715    0.066   10.812    0.000
##     V20               0.753    0.061   12.286    0.000
##   F2 =~                                               
##     V5                1.000                           
##     V10               1.142    0.152    7.499    0.000
##     V11               1.353    0.162    8.356    0.000
##     V15               0.905    0.123    7.357    0.000
##     V22               0.768    0.122    6.275    0.000
##   F3 =~                                               
##     V4                1.000                           
##     V7                0.970    0.128    7.553    0.000
##     V9                1.780    0.322    5.521    0.000
##     V12               1.499    0.241    6.223    0.000
##     V17               1.348    0.200    6.748    0.000
##     V18               1.918    0.298    6.426    0.000
##     V19               1.716    0.287    5.970    0.000
##     V21               1.356    0.227    5.976    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   F1 ~~                                               
##     F2                0.701    0.106    6.599    0.000
##     F3               -0.192    0.040   -4.790    0.000
##   F2 ~~                                               
##     F3               -0.172    0.036   -4.771    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                4.366    0.086   50.675    0.000
##    .V2                4.868    0.080   60.741    0.000
##    .V3                3.527    0.090   39.243    0.000
##    .V6                2.707    0.082   32.958    0.000
##    .V8                3.043    0.090   33.972    0.000
##    .V13               3.586    0.087   41.108    0.000
##    .V14               4.027    0.090   44.989    0.000
##    .V16               2.473    0.075   33.137    0.000
##    .V20               2.245    0.073   30.597    0.000
##    .V5                2.199    0.077   28.505    0.000
##    .V10               2.204    0.075   29.388    0.000
##    .V11               2.239    0.079   28.241    0.000
##    .V15               1.769    0.067   26.261    0.000
##    .V22               2.581    0.082   31.495    0.000
##    .V4                6.298    0.052  121.663    0.000
##    .V7                6.312    0.044  144.912    0.000
##    .V9                6.035    0.068   88.446    0.000
##    .V12               5.699    0.062   92.113    0.000
##    .V17               6.406    0.044  144.908    0.000
##    .V18               5.702    0.066   86.338    0.000
##    .V19               5.946    0.062   96.417    0.000
##    .V21               5.852    0.066   89.138    0.000
##     F1                0.000                           
##     F2                0.000                           
##     F3                0.000                           
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                1.128    0.093   12.160    0.000
##    .V2                1.105    0.088   12.489    0.000
##    .V3                1.301    0.106   12.301    0.000
##    .V6                1.553    0.135   11.534    0.000
##    .V8                0.852    0.082   10.436    0.000
##    .V13               1.142    0.125    9.160    0.000
##    .V14               1.804    0.142   12.713    0.000
##    .V16               1.235    0.110   11.263    0.000
##    .V20               1.075    0.137    7.849    0.000
##    .V5                1.503    0.180    8.370    0.000
##    .V10               1.169    0.147    7.948    0.000
##    .V11               1.044    0.141    7.389    0.000
##    .V15               1.106    0.153    7.210    0.000
##    .V22               2.076    0.184   11.251    0.000
##    .V4                0.802    0.113    7.114    0.000
##    .V7                0.523    0.075    7.001    0.000
##    .V9                1.117    0.149    7.477    0.000
##    .V12               0.987    0.126    7.842    0.000
##    .V17               0.375    0.057    6.626    0.000
##    .V18               0.909    0.143    6.368    0.000
##    .V19               0.844    0.111    7.612    0.000
##    .V21               1.245    0.133    9.326    0.000
##     F1                1.625    0.148   10.989    0.000
##     F2                0.705    0.158    4.446    0.000
##     F3                0.193    0.050    3.834    0.000

Model 1 (Step 2)

We calculate the top Modification indices (MI) and then progressively add more contraints.

mi1 <- modindices(fit1)
head(mi1[order(mi1$mi, decreasing = TRUE),],10)
##     lhs op rhs     mi mi.scaled    epc sepc.lv sepc.all sepc.nox
## 183  V6 ~~ V16 91.282    74.492  0.733   0.733    0.322    0.322
## 120  V1 ~~  V2 82.448    67.283  0.613   0.613    0.239    0.239
## 84   F1 =~ V12 41.517    33.880 -0.313  -0.400   -0.335   -0.335
## 285 V10 ~~ V11 38.081    31.076  0.580   0.580    0.263    0.263
## 335  V7 ~~ V21 33.529    27.362  0.263   0.263    0.248    0.248
## 323  V4 ~~  V7 33.432    27.283  0.209   0.209    0.250    0.250
## 106  F3 =~  V1 28.732    23.448  0.872   0.383    0.231    0.231
## 348 V18 ~~ V19 18.607    15.184  0.250   0.250    0.165    0.165
## 185  V6 ~~  V5 17.193    14.030  0.354   0.354    0.151    0.151
## 275  V5 ~~ V15 15.584    12.718  0.313   0.313    0.162    0.162

Model 2

Since the MI for V6 ~~ V16 is the highest, we constrain these two items to covary. We find the fit indices, fit parameters and also the top MIs.

model2 <- '
 F1 =~ V1 + V2 + V3 + V6 + V8 + V13 + V14 + V16 + V20
 F2 =~ V5 + V10 + V11 + V15 + V22
 F3 =~ V4 + V7 + V9 + V12 + V17 + V18 + V19 + V21
 V6 ~~ V16'
#MLM CFA with V6 correlated with V16
fit2 <- cfa(model2, data = db1, estimator = "MLM")
summary(fit2, fit.measures = TRUE)
## lavaan (0.5-22) converged normally after  48 iterations
## 
##   Number of observations                           372
## 
##   Estimator                                         ML      Robust
##   Minimum Function Test Statistic              597.731     493.398
##   Degrees of freedom                               205         205
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.211
##     for the Satorra-Bentler correction
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             3452.269    2911.466
##   Degrees of freedom                               231         231
##   P-value                                        0.000       0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.878       0.892
##   Tucker-Lewis Index (TLI)                       0.863       0.879
## 
##   Robust Comparative Fit Index (CFI)                         0.890
##   Robust Tucker-Lewis Index (TLI)                            0.876
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -12762.049  -12762.049
##   Loglikelihood unrestricted model (H1)     -12463.184  -12463.184
## 
##   Number of free parameters                         70          70
##   Akaike (AIC)                               25664.098   25664.098
##   Bayesian (BIC)                             25938.421   25938.421
##   Sample-size adjusted Bayesian (BIC)        25716.333   25716.333
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.072       0.061
##   90 Percent Confidence Interval          0.065  0.078       0.055  0.068
##   P-value RMSEA <= 0.05                          0.000       0.002
## 
##   Robust RMSEA                                               0.068
##   90 Percent Confidence Interval                             0.060  0.075
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.069       0.069
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                           Robust.sem
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   F1 =~                                               
##     V1                1.000                           
##     V2                0.887    0.040   22.273    0.000
##     V3                1.015    0.052   19.606    0.000
##     V6                0.715    0.069   10.355    0.000
##     V8                1.133    0.058   19.672    0.000
##     V13               1.002    0.062   16.205    0.000
##     V14               0.847    0.058   14.672    0.000
##     V16               0.672    0.065   10.280    0.000
##     V20               0.746    0.061   12.271    0.000
##   F2 =~                                               
##     V5                1.000                           
##     V10               1.151    0.154    7.463    0.000
##     V11               1.363    0.164    8.317    0.000
##     V15               0.909    0.124    7.341    0.000
##     V22               0.771    0.123    6.243    0.000
##   F3 =~                                               
##     V4                1.000                           
##     V7                0.969    0.128    7.554    0.000
##     V9                1.779    0.322    5.521    0.000
##     V12               1.496    0.240    6.223    0.000
##     V17               1.347    0.200    6.747    0.000
##     V18               1.917    0.298    6.433    0.000
##     V19               1.714    0.287    5.971    0.000
##     V21               1.356    0.227    5.977    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .V6 ~~                                               
##    .V16               0.733    0.121    6.061    0.000
##   F1 ~~                                               
##     F2                0.697    0.106    6.596    0.000
##     F3               -0.188    0.040   -4.663    0.000
##   F2 ~~                                               
##     F3               -0.171    0.036   -4.762    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                4.366    0.086   50.675    0.000
##    .V2                4.868    0.080   60.741    0.000
##    .V3                3.527    0.090   39.243    0.000
##    .V6                2.707    0.082   32.958    0.000
##    .V8                3.043    0.090   33.972    0.000
##    .V13               3.586    0.087   41.108    0.000
##    .V14               4.027    0.090   44.989    0.000
##    .V16               2.473    0.075   33.137    0.000
##    .V20               2.245    0.073   30.597    0.000
##    .V5                2.199    0.077   28.505    0.000
##    .V10               2.204    0.075   29.388    0.000
##    .V11               2.239    0.079   28.241    0.000
##    .V15               1.769    0.067   26.261    0.000
##    .V22               2.581    0.082   31.495    0.000
##    .V4                6.298    0.052  121.663    0.000
##    .V7                6.312    0.044  144.912    0.000
##    .V9                6.035    0.068   88.446    0.000
##    .V12               5.699    0.062   92.113    0.000
##    .V17               6.406    0.044  144.908    0.000
##    .V18               5.702    0.066   86.338    0.000
##    .V19               5.946    0.062   96.417    0.000
##    .V21               5.852    0.066   89.138    0.000
##     F1                0.000                           
##     F2                0.000                           
##     F3                0.000                           
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                1.091    0.092   11.808    0.000
##    .V2                1.076    0.088   12.203    0.000
##    .V3                1.283    0.105   12.195    0.000
##    .V6                1.654    0.141   11.695    0.000
##    .V8                0.844    0.080   10.545    0.000
##    .V13               1.156    0.129    8.933    0.000
##    .V14               1.780    0.141   12.638    0.000
##    .V16               1.317    0.116   11.397    0.000
##    .V20               1.071    0.136    7.853    0.000
##    .V5                1.511    0.180    8.403    0.000
##    .V10               1.164    0.147    7.916    0.000
##    .V11               1.038    0.141    7.354    0.000
##    .V15               1.108    0.154    7.215    0.000
##    .V22               2.077    0.185   11.254    0.000
##    .V4                0.801    0.113    7.115    0.000
##    .V7                0.523    0.075    7.002    0.000
##    .V9                1.116    0.149    7.474    0.000
##    .V12               0.988    0.126    7.844    0.000
##    .V17               0.375    0.057    6.627    0.000
##    .V18               0.909    0.143    6.368    0.000
##    .V19               0.844    0.111    7.616    0.000
##    .V21               1.244    0.133    9.326    0.000
##     F1                1.662    0.148   11.201    0.000
##     F2                0.697    0.158    4.418    0.000
##     F3                0.193    0.050    3.837    0.000
#Calulating MI
mi2 <- modindices(fit2)
head(mi2[order(mi2$mi, decreasing = TRUE),],10)
##     lhs op rhs     mi mi.scaled    epc sepc.lv sepc.all sepc.nox
## 121  V1 ~~  V2 78.275    64.612  0.591   0.591    0.231    0.231
## 85   F1 =~ V12 41.936    34.616 -0.310  -0.400   -0.336   -0.336
## 285 V10 ~~ V11 37.348    30.829  0.578   0.578    0.262    0.262
## 335  V7 ~~ V21 33.497    27.650  0.263   0.263    0.248    0.248
## 323  V4 ~~  V7 33.386    27.558  0.209   0.209    0.250    0.250
## 107  F3 =~  V1 28.188    23.268  0.851   0.374    0.225    0.225
## 348 V18 ~~ V19 18.617    15.367  0.250   0.250    0.165    0.165
## 275  V5 ~~ V15 16.067    13.262  0.318   0.318    0.165    0.165
## 176  V3 ~~ V12 15.294    12.625 -0.253  -0.253   -0.123   -0.123
## 112  F3 =~ V13 14.632    12.078 -0.628  -0.276   -0.164   -0.164

Model 3

In the next model we constrain V1 and V2 to covary. Ensure you get the detailed interpretation from the text.

model3 <- '
 F1 =~ V1 + V2 + V3 + V6 + V8 + V13 + V14 + V16 + V20
 F2 =~ V5 + V10 + V11 + V15 + V22
 F3 =~ V4 + V7 + V9 + V12 + V17 + V18 + V19 + V21
 V6 ~~ V16
 V1 ~~ V2'
#MLM CFA with V1 correlated with V2
fit3 <- cfa(model3, data = db1, estimator = "MLM")
summary(fit3, fit.measures = TRUE, modindices = TRUE)
## lavaan (0.5-22) converged normally after  46 iterations
## 
##   Number of observations                           372
## 
##   Estimator                                         ML      Robust
##   Minimum Function Test Statistic              520.481     431.496
##   Degrees of freedom                               204         204
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.206
##     for the Satorra-Bentler correction
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             3452.269    2911.466
##   Degrees of freedom                               231         231
##   P-value                                        0.000       0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.902       0.915
##   Tucker-Lewis Index (TLI)                       0.889       0.904
## 
##   Robust Comparative Fit Index (CFI)                         0.914
##   Robust Tucker-Lewis Index (TLI)                            0.902
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -12723.424  -12723.424
##   Loglikelihood unrestricted model (H1)     -12463.184  -12463.184
## 
##   Number of free parameters                         71          71
##   Akaike (AIC)                               25588.849   25588.849
##   Bayesian (BIC)                             25867.090   25867.090
##   Sample-size adjusted Bayesian (BIC)        25641.829   25641.829
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.065       0.055
##   90 Percent Confidence Interval          0.058  0.071       0.048  0.061
##   P-value RMSEA <= 0.05                          0.000       0.114
## 
##   Robust RMSEA                                               0.060
##   90 Percent Confidence Interval                             0.052  0.068
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.066       0.066
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                           Robust.sem
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   F1 =~                                               
##     V1                1.000                           
##     V2                0.877    0.042   21.128    0.000
##     V3                1.068    0.059   18.197    0.000
##     V6                0.767    0.077   10.012    0.000
##     V8                1.216    0.067   18.214    0.000
##     V13               1.086    0.069   15.667    0.000
##     V14               0.884    0.063   14.090    0.000
##     V16               0.727    0.072   10.040    0.000
##     V20               0.811    0.067   12.120    0.000
##   F2 =~                                               
##     V5                1.000                           
##     V10               1.151    0.154    7.468    0.000
##     V11               1.363    0.164    8.335    0.000
##     V15               0.910    0.124    7.353    0.000
##     V22               0.769    0.123    6.256    0.000
##   F3 =~                                               
##     V4                1.000                           
##     V7                0.969    0.128    7.556    0.000
##     V9                1.782    0.323    5.517    0.000
##     V12               1.505    0.241    6.231    0.000
##     V17               1.349    0.200    6.750    0.000
##     V18               1.919    0.299    6.422    0.000
##     V19               1.718    0.288    5.971    0.000
##     V21               1.356    0.227    5.969    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .V6 ~~                                               
##    .V16               0.708    0.122    5.797    0.000
##  .V1 ~~                                               
##    .V2                0.596    0.087    6.882    0.000
##   F1 ~~                                               
##     F2                0.672    0.103    6.516    0.000
##     F3               -0.193    0.039   -4.908    0.000
##   F2 ~~                                               
##     F3               -0.171    0.036   -4.758    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                4.366    0.086   50.675    0.000
##    .V2                4.868    0.080   60.741    0.000
##    .V3                3.527    0.090   39.243    0.000
##    .V6                2.707    0.082   32.958    0.000
##    .V8                3.043    0.090   33.972    0.000
##    .V13               3.586    0.087   41.108    0.000
##    .V14               4.027    0.090   44.989    0.000
##    .V16               2.473    0.075   33.137    0.000
##    .V20               2.245    0.073   30.597    0.000
##    .V5                2.199    0.077   28.505    0.000
##    .V10               2.204    0.075   29.388    0.000
##    .V11               2.239    0.079   28.241    0.000
##    .V15               1.769    0.067   26.261    0.000
##    .V22               2.581    0.082   31.495    0.000
##    .V4                6.298    0.052  121.663    0.000
##    .V7                6.312    0.044  144.912    0.000
##    .V9                6.035    0.068   88.446    0.000
##    .V12               5.699    0.062   92.113    0.000
##    .V17               6.406    0.044  144.908    0.000
##    .V18               5.702    0.066   86.338    0.000
##    .V19               5.946    0.062   96.417    0.000
##    .V21               5.852    0.066   89.138    0.000
##     F1                0.000                           
##     F2                0.000                           
##     F3                0.000                           
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                1.276    0.105   12.194    0.000
##    .V2                1.246    0.099   12.652    0.000
##    .V3                1.312    0.110   11.915    0.000
##    .V6                1.633    0.143   11.429    0.000
##    .V8                0.793    0.083    9.546    0.000
##    .V13               1.081    0.124    8.700    0.000
##    .V14               1.819    0.145   12.550    0.000
##    .V16               1.287    0.117   11.006    0.000
##    .V20               1.024    0.137    7.496    0.000
##    .V5                1.511    0.179    8.417    0.000
##    .V10               1.165    0.147    7.901    0.000
##    .V11               1.037    0.141    7.382    0.000
##    .V15               1.106    0.153    7.229    0.000
##    .V22               2.079    0.184   11.277    0.000
##    .V4                0.802    0.113    7.117    0.000
##    .V7                0.523    0.075    7.008    0.000
##    .V9                1.116    0.149    7.485    0.000
##    .V12               0.985    0.126    7.842    0.000
##    .V17               0.375    0.057    6.634    0.000
##    .V18               0.909    0.143    6.365    0.000
##    .V19               0.844    0.111    7.626    0.000
##    .V21               1.245    0.134    9.322    0.000
##     F1                1.477    0.150    9.855    0.000
##     F2                0.697    0.158    4.422    0.000
##     F3                0.192    0.050    3.831    0.000
## 
## Modification Indices:
## 
##     lhs op rhs     mi mi.scaled    epc sepc.lv sepc.all sepc.nox
## 78   F1 =~  V5  0.073     0.061  0.025   0.031    0.021    0.021
## 79   F1 =~ V10  5.282     4.379 -0.209  -0.254   -0.176   -0.176
## 80   F1 =~ V11  0.167     0.138  0.041   0.049    0.032    0.032
## 81   F1 =~ V15  0.017     0.014  0.011   0.013    0.010    0.010
## 82   F1 =~ V22  6.492     5.382  0.261   0.318    0.201    0.201
## 83   F1 =~  V4  4.564     3.783  0.097   0.118    0.118    0.118
## 84   F1 =~  V7  1.985     1.646  0.053   0.064    0.076    0.076
## 85   F1 =~  V9  1.908     1.582  0.077   0.094    0.072    0.072
## 86   F1 =~ V12 41.026    34.012 -0.332  -0.404   -0.339   -0.339
## 87   F1 =~ V17  0.074     0.062  0.009   0.011    0.013    0.013
## 88   F1 =~ V18  2.003     1.660  0.074   0.090    0.071    0.071
## 89   F1 =~ V19  0.196     0.163 -0.022  -0.027   -0.023   -0.023
## 90   F1 =~ V21  0.224     0.185  0.027   0.033    0.026    0.026
## 91   F2 =~  V1  0.896     0.743 -0.103  -0.086   -0.052   -0.052
## 92   F2 =~  V2  2.151     1.783 -0.155  -0.129   -0.084   -0.084
## 93   F2 =~  V3  0.015     0.013  0.016   0.014    0.008    0.008
## 94   F2 =~  V6  0.709     0.587  0.100   0.083    0.053    0.053
## 95   F2 =~  V8  0.133     0.110  0.042   0.035    0.020    0.020
## 96   F2 =~ V13  0.895     0.742  0.115   0.096    0.057    0.057
## 97   F2 =~ V14  0.761     0.631 -0.129  -0.108   -0.062   -0.062
## 98   F2 =~ V16  4.108     3.406  0.215   0.179    0.125    0.125
## 99   F2 =~ V20  0.829     0.687 -0.103  -0.086   -0.061   -0.061
## 100  F2 =~  V4  4.293     3.559  0.160   0.133    0.134    0.134
## 101  F2 =~  V7  0.362     0.300  0.038   0.032    0.038    0.038
## 102  F2 =~  V9  1.030     0.854  0.096   0.081    0.061    0.061
## 103  F2 =~ V12 14.001    11.608 -0.329  -0.274   -0.230   -0.230
## 104  F2 =~ V17  0.035     0.029  0.011   0.009    0.011    0.011
## 105  F2 =~ V18  1.155     0.958  0.096   0.080    0.063    0.063
## 106  F2 =~ V19  0.425     0.352 -0.055  -0.046   -0.039   -0.039
## 107  F2 =~ V21  0.143     0.118 -0.036  -0.030   -0.024   -0.024
## 108  F3 =~  V1 14.440    11.971  0.560   0.246    0.148    0.148
## 109  F3 =~  V2  1.034     0.858  0.146   0.064    0.042    0.042
## 110  F3 =~  V3  0.345     0.286  0.104   0.046    0.026    0.026
## 111  F3 =~  V6  1.167     0.967 -0.175  -0.077   -0.048   -0.048
## 112  F3 =~  V8  1.460     1.211 -0.185  -0.081   -0.047   -0.047
## 113  F3 =~ V13  9.519     7.892 -0.509  -0.223   -0.133   -0.133
## 114  F3 =~ V14  5.974     4.953  0.492   0.216    0.125    0.125
## 115  F3 =~ V16  2.646     2.194 -0.235  -0.103   -0.072   -0.072
## 116  F3 =~ V20  0.332     0.275 -0.089  -0.039   -0.028   -0.028
## 117  F3 =~  V5  0.086     0.071 -0.062  -0.027   -0.018   -0.018
## 118  F3 =~ V10  0.671     0.556 -0.163  -0.072   -0.050   -0.050
## 119  F3 =~ V11  3.325     2.757  0.385   0.169    0.110    0.110
## 120  F3 =~ V15  2.948     2.444 -0.314  -0.138   -0.106   -0.106
## 121  F3 =~ V22  0.778     0.645  0.207   0.091    0.057    0.057
## 122  V1 ~~  V3 13.922    11.542  0.248   0.248    0.086    0.086
## 123  V1 ~~  V6  0.003     0.003  0.003   0.003    0.001    0.001
## 124  V1 ~~  V8  0.617     0.512 -0.046  -0.046   -0.016   -0.016
## 125  V1 ~~ V13  1.662     1.378 -0.080  -0.080   -0.029   -0.029
## 126  V1 ~~ V14  0.860     0.713  0.069   0.069    0.024    0.024
## 127  V1 ~~ V16  0.486     0.403 -0.037  -0.037   -0.016   -0.016
## 128  V1 ~~ V20  0.284     0.235 -0.031  -0.031   -0.013   -0.013
## 129  V1 ~~  V5  0.043     0.036 -0.014  -0.014   -0.006   -0.006
## 130  V1 ~~ V10  0.109     0.090 -0.021  -0.021   -0.009   -0.009
## 131  V1 ~~ V11  0.709     0.588  0.052   0.052    0.021    0.021
## 132  V1 ~~ V15  0.130     0.108 -0.021  -0.021   -0.010   -0.010
## 133  V1 ~~ V22  0.625     0.518  0.061   0.061    0.023    0.023
## 134  V1 ~~  V4  1.546     1.281  0.060   0.060    0.036    0.036
## 135  V1 ~~  V7  0.598     0.496  0.031   0.031    0.022    0.022
## 136  V1 ~~  V9  1.991     1.651  0.083   0.083    0.038    0.038
## 137  V1 ~~ V12  0.602     0.499 -0.042  -0.042   -0.021   -0.021
## 138  V1 ~~ V17  0.034     0.028  0.007   0.007    0.005    0.005
## 139  V1 ~~ V18  1.330     1.103  0.063   0.063    0.030    0.030
## 140  V1 ~~ V19  1.377     1.142  0.061   0.061    0.031    0.031
## 141  V1 ~~ V21  0.110     0.091  0.020   0.020    0.010    0.010
## 142  V2 ~~  V3  0.013     0.011 -0.007  -0.007   -0.003   -0.003
## 143  V2 ~~  V6  0.211     0.175  0.027   0.027    0.011    0.011
## 144  V2 ~~  V8  2.255     1.870  0.085   0.085    0.032    0.032
## 145  V2 ~~ V13  1.180     0.978 -0.065  -0.065   -0.025   -0.025
## 146  V2 ~~ V14  8.290     6.872  0.209   0.209    0.079    0.079
## 147  V2 ~~ V16  0.479     0.397 -0.036  -0.036   -0.016   -0.016
## 148  V2 ~~ V20  2.956     2.451 -0.096  -0.096   -0.044   -0.044
## 149  V2 ~~  V5  0.000     0.000  0.000   0.000    0.000    0.000
## 150  V2 ~~ V10  0.247     0.205 -0.030  -0.030   -0.014   -0.014
## 151  V2 ~~ V11  0.610     0.505 -0.047  -0.047   -0.020   -0.020
## 152  V2 ~~ V15  0.989     0.820 -0.057  -0.057   -0.028   -0.028
## 153  V2 ~~ V22  1.682     1.395  0.098   0.098    0.040    0.040
## 154  V2 ~~  V4  0.136     0.113 -0.017  -0.017   -0.011   -0.011
## 155  V2 ~~  V7  0.314     0.260 -0.022  -0.022   -0.017   -0.017
## 156  V2 ~~  V9  2.864     2.374  0.097   0.097    0.048    0.048
## 157  V2 ~~ V12  0.557     0.462 -0.040  -0.040   -0.022   -0.022
## 158  V2 ~~ V17  0.002     0.002  0.002   0.002    0.001    0.001
## 159  V2 ~~ V18  0.374     0.310  0.032   0.032    0.017    0.017
## 160  V2 ~~ V19  0.006     0.005 -0.004  -0.004   -0.002   -0.002
## 161  V2 ~~ V21  0.019     0.016 -0.008  -0.008   -0.004   -0.004
## 162  V3 ~~  V6  1.861     1.543  0.099   0.099    0.036    0.036
## 163  V3 ~~  V8  0.020     0.017  0.011   0.011    0.004    0.004
## 164  V3 ~~ V13  2.279     1.889 -0.115  -0.115   -0.040   -0.040
## 165  V3 ~~ V14  0.026     0.022  0.015   0.015    0.005    0.005
## 166  V3 ~~ V16  3.878     3.215 -0.127  -0.127   -0.051   -0.051
## 167  V3 ~~ V20  6.454     5.351 -0.177  -0.177   -0.072   -0.072
## 168  V3 ~~  V5  0.563     0.467  0.061   0.061    0.024    0.024
## 169  V3 ~~ V10  0.008     0.007  0.007   0.007    0.003    0.003
## 170  V3 ~~ V11  0.027     0.022  0.012   0.012    0.005    0.005
## 171  V3 ~~ V15  0.136     0.113 -0.026  -0.026   -0.012   -0.012
## 172  V3 ~~ V22  0.031     0.026 -0.016  -0.016   -0.006   -0.006
## 173  V3 ~~  V4  2.508     2.079  0.092   0.092    0.053    0.053
## 174  V3 ~~  V7  1.894     1.570  0.065   0.065    0.045    0.045
## 175  V3 ~~  V9  0.673     0.558 -0.058  -0.058   -0.025   -0.025
## 176  V3 ~~ V12 16.431    13.622 -0.265  -0.265   -0.129   -0.129
## 177  V3 ~~ V17  5.874     4.870  0.103   0.103    0.070    0.070
## 178  V3 ~~ V18  0.086     0.071  0.019   0.019    0.009    0.009
## 179  V3 ~~ V19  0.250     0.208 -0.031  -0.031   -0.015   -0.015
## 180  V3 ~~ V21  0.295     0.244  0.039   0.039    0.018    0.018
## 181  V6 ~~  V8  1.718     1.424 -0.082  -0.082   -0.030   -0.030
## 182  V6 ~~ V13  3.515     2.914  0.126   0.126    0.047    0.047
## 183  V6 ~~ V14  7.689     6.375 -0.226  -0.226   -0.083   -0.083
## 184  V6 ~~ V20  0.898     0.744 -0.059  -0.059   -0.026   -0.026
## 185  V6 ~~  V5 10.791     8.946  0.247   0.247    0.105    0.105
## 186  V6 ~~ V10  0.228     0.189 -0.033  -0.033   -0.014   -0.014
## 187  V6 ~~ V11  3.044     2.523 -0.119  -0.119   -0.049   -0.049
## 188  V6 ~~ V15  1.201     0.995  0.071   0.071    0.035    0.035
## 189  V6 ~~ V22  0.385     0.319 -0.053  -0.053   -0.021   -0.021
## 190  V6 ~~  V4  0.066     0.055  0.014   0.014    0.009    0.009
## 191  V6 ~~  V7  1.010     0.837 -0.044  -0.044   -0.033   -0.033
## 192  V6 ~~  V9  0.012     0.010  0.007   0.007    0.003    0.003
## 193  V6 ~~ V12  3.911     3.242  0.119   0.119    0.063    0.063
## 194  V6 ~~ V17  5.304     4.397 -0.090  -0.090   -0.067   -0.067
## 195  V6 ~~ V18  0.305     0.253  0.033   0.033    0.016    0.016
## 196  V6 ~~ V19  0.037     0.031  0.011   0.011    0.006    0.006
## 197  V6 ~~ V21  0.443     0.367 -0.044  -0.044   -0.022   -0.022
## 198  V8 ~~ V13  1.924     1.595 -0.097  -0.097   -0.034   -0.034
## 199  V8 ~~ V14  8.074     6.693 -0.225  -0.225   -0.076   -0.076
## 200  V8 ~~ V16  1.696     1.406  0.073   0.073    0.029    0.029
## 201  V8 ~~ V20  7.151     5.928  0.166   0.166    0.068    0.068
## 202  V8 ~~  V5  2.073     1.719 -0.100  -0.100   -0.039   -0.039
## 203  V8 ~~ V10  0.114     0.094  0.021   0.021    0.009    0.009
## 204  V8 ~~ V11  0.624     0.517  0.050   0.050    0.019    0.019
## 205  V8 ~~ V15  0.002     0.002  0.003   0.003    0.001    0.001
## 206  V8 ~~ V22  0.262     0.217 -0.040  -0.040   -0.015   -0.015
## 207  V8 ~~  V4  2.333     1.934 -0.075  -0.075   -0.043   -0.043
## 208  V8 ~~  V7  0.166     0.137 -0.016  -0.016   -0.011   -0.011
## 209  V8 ~~  V9  0.018     0.015 -0.008  -0.008   -0.004   -0.004
## 210  V8 ~~ V12  7.730     6.408 -0.154  -0.154   -0.075   -0.075
## 211  V8 ~~ V17  0.779     0.646  0.032   0.032    0.022    0.022
## 212  V8 ~~ V18  0.104     0.086 -0.018  -0.018   -0.008   -0.008
## 213  V8 ~~ V19  2.965     2.458  0.090   0.090    0.044    0.044
## 214  V8 ~~ V21  0.065     0.054 -0.016  -0.016   -0.007   -0.007
## 215 V13 ~~ V14  2.773     2.299  0.140   0.140    0.048    0.048
## 216 V13 ~~ V16  0.120     0.099 -0.021  -0.021   -0.009   -0.009
## 217 V13 ~~ V20  7.493     6.212  0.178   0.178    0.075    0.075
## 218 V13 ~~  V5  0.302     0.250 -0.041  -0.041   -0.017   -0.017
## 219 V13 ~~ V10  0.001     0.001 -0.002  -0.002   -0.001   -0.001
## 220 V13 ~~ V11  0.198     0.164 -0.031  -0.031   -0.012   -0.012
## 221 V13 ~~ V15  0.182     0.151  0.028   0.028    0.013    0.013
## 222 V13 ~~ V22  0.485     0.402  0.060   0.060    0.023    0.023
## 223 V13 ~~  V4  0.268     0.222  0.028   0.028    0.017    0.017
## 224 V13 ~~  V7  0.576     0.477  0.033   0.033    0.023    0.023
## 225 V13 ~~  V9  6.758     5.603 -0.169  -0.169   -0.077   -0.077
## 226 V13 ~~ V12  9.295     7.706  0.184   0.184    0.092    0.092
## 227 V13 ~~ V17  0.241     0.200 -0.019  -0.019   -0.013   -0.013
## 228 V13 ~~ V18  2.702     2.240 -0.099  -0.099   -0.046   -0.046
## 229 V13 ~~ V19  4.612     3.823 -0.123  -0.123   -0.062   -0.062
## 230 V13 ~~ V21  0.334     0.277 -0.039  -0.039   -0.018   -0.018
## 231 V14 ~~ V16  1.072     0.889  0.075   0.075    0.030    0.030
## 232 V14 ~~ V20  0.032     0.027 -0.014  -0.014   -0.006   -0.006
## 233 V14 ~~  V5  0.221     0.184 -0.044  -0.044   -0.017   -0.017
## 234 V14 ~~ V10  3.809     3.158 -0.166  -0.166   -0.066   -0.066
## 235 V14 ~~ V11  1.636     1.357  0.109   0.109    0.041    0.041
## 236 V14 ~~ V15  0.177     0.147  0.034   0.034    0.015    0.015
## 237 V14 ~~ V22  0.807     0.669  0.095   0.095    0.035    0.035
## 238 V14 ~~  V4  0.256     0.212  0.033   0.033    0.019    0.019
## 239 V14 ~~  V7  0.099     0.082  0.017   0.017    0.012    0.012
## 240 V14 ~~  V9  0.001     0.001 -0.003  -0.003   -0.001   -0.001
## 241 V14 ~~ V12  0.001     0.001  0.003   0.003    0.001    0.001
## 242 V14 ~~ V17  0.072     0.060 -0.013  -0.013   -0.009   -0.009
## 243 V14 ~~ V18  0.570     0.472  0.056   0.056    0.026    0.026
## 244 V14 ~~ V19  2.961     2.455  0.122   0.122    0.059    0.059
## 245 V14 ~~ V21  0.121     0.101  0.029   0.029    0.013    0.013
## 246 V16 ~~ V20  0.007     0.005 -0.005  -0.005   -0.002   -0.002
## 247 V16 ~~  V5  0.620     0.514  0.053   0.053    0.025    0.025
## 248 V16 ~~ V10  0.001     0.001 -0.002  -0.002   -0.001   -0.001
## 249 V16 ~~ V11  1.823     1.511  0.082   0.082    0.038    0.038
## 250 V16 ~~ V15  0.167     0.138 -0.024  -0.024   -0.013   -0.013
## 251 V16 ~~ V22  0.149     0.123  0.029   0.029    0.013    0.013
## 252 V16 ~~  V4  0.755     0.626  0.041   0.041    0.029    0.029
## 253 V16 ~~  V7  0.001     0.001  0.001   0.001    0.001    0.001
## 254 V16 ~~  V9  1.863     1.545  0.079   0.079    0.042    0.042
## 255 V16 ~~ V12  5.621     4.660 -0.127  -0.127   -0.074   -0.074
## 256 V16 ~~ V17  0.061     0.051  0.009   0.009    0.007    0.007
## 257 V16 ~~ V18  0.104     0.086 -0.017  -0.017   -0.009   -0.009
## 258 V16 ~~ V19  3.059     2.536 -0.089  -0.089   -0.052   -0.052
## 259 V16 ~~ V21  0.621     0.515  0.047   0.047    0.026    0.026
## 260 V20 ~~  V5  0.482     0.400 -0.049  -0.049   -0.023   -0.023
## 261 V20 ~~ V10  0.001     0.001 -0.002  -0.002   -0.001   -0.001
## 262 V20 ~~ V11  1.546     1.282 -0.081  -0.081   -0.037   -0.037
## 263 V20 ~~ V15  0.214     0.177  0.028   0.028    0.015    0.015
## 264 V20 ~~ V22  0.020     0.016  0.011   0.011    0.005    0.005
## 265 V20 ~~  V4  1.150     0.953 -0.054  -0.054   -0.038   -0.038
## 266 V20 ~~  V7  0.020     0.016  0.006   0.006    0.005    0.005
## 267 V20 ~~  V9  0.435     0.360  0.040   0.040    0.022    0.022
## 268 V20 ~~ V12  0.043     0.035  0.012   0.012    0.007    0.007
## 269 V20 ~~ V17  2.209     1.831 -0.055  -0.055   -0.046   -0.046
## 270 V20 ~~ V18  0.339     0.281  0.033   0.033    0.018    0.018
## 271 V20 ~~ V19  0.782     0.648 -0.048  -0.048   -0.028   -0.028
## 272 V20 ~~ V21  0.825     0.684  0.057   0.057    0.032    0.032
## 273  V5 ~~ V10  1.961     1.625 -0.122  -0.122   -0.057   -0.057
## 274  V5 ~~ V11  7.750     6.425 -0.258  -0.258   -0.114   -0.114
## 275  V5 ~~ V15 15.931    13.207  0.316   0.316    0.164    0.164
## 276  V5 ~~ V22  1.254     1.039  0.114   0.114    0.048    0.048
## 277  V5 ~~  V4  0.365     0.302  0.037   0.037    0.025    0.025
## 278  V5 ~~  V7  2.810     2.330 -0.084  -0.084   -0.067   -0.067
## 279  V5 ~~  V9  0.107     0.089  0.024   0.024    0.012    0.012
## 280  V5 ~~ V12  6.543     5.424  0.177   0.177    0.100    0.100
## 281  V5 ~~ V17  0.210     0.174 -0.021  -0.021   -0.016   -0.016
## 282  V5 ~~ V18  0.646     0.536  0.055   0.055    0.029    0.029
## 283  V5 ~~ V19  1.771     1.468 -0.087  -0.087   -0.050   -0.050
## 284  V5 ~~ V21  1.725     1.430 -0.101  -0.101   -0.054   -0.054
## 285 V10 ~~ V11 37.190    30.832  0.575   0.575    0.260    0.260
## 286 V10 ~~ V15  6.361     5.273 -0.191  -0.191   -0.102   -0.102
## 287 V10 ~~ V22  5.764     4.778 -0.227  -0.227   -0.100   -0.100
## 288 V10 ~~  V4  0.667     0.553 -0.046  -0.046   -0.032   -0.032
## 289 V10 ~~  V7  4.084     3.386  0.092   0.092    0.076    0.076
## 290 V10 ~~  V9  0.059     0.049 -0.017  -0.017   -0.009   -0.009
## 291 V10 ~~ V12  0.138     0.114 -0.023  -0.023   -0.014   -0.014
## 292 V10 ~~ V17  1.120     0.929 -0.044  -0.044   -0.035   -0.035
## 293 V10 ~~ V18  2.308     1.913 -0.096  -0.096   -0.052   -0.052
## 294 V10 ~~ V19  2.202     1.825  0.089   0.089    0.052    0.052
## 295 V10 ~~ V21  0.171     0.142 -0.029  -0.029   -0.016   -0.016
## 296 V11 ~~ V15  5.502     4.562 -0.191  -0.191   -0.096   -0.096
## 297 V11 ~~ V22  1.791     1.485 -0.131  -0.131   -0.054   -0.054
## 298 V11 ~~  V4  0.720     0.596  0.047   0.047    0.031    0.031
## 299 V11 ~~  V7  0.657     0.545  0.037   0.037    0.029    0.029
## 300 V11 ~~  V9  0.030     0.025  0.012   0.012    0.006    0.006
## 301 V11 ~~ V12  0.674     0.559 -0.052  -0.052   -0.029   -0.029
## 302 V11 ~~ V17  0.538     0.446  0.030   0.030    0.023    0.023
## 303 V11 ~~ V18  0.407     0.338  0.040   0.040    0.021    0.021
## 304 V11 ~~ V19  0.230     0.190  0.029   0.029    0.016    0.016
## 305 V11 ~~ V21  0.655     0.543 -0.057  -0.057   -0.029   -0.029
## 306 V15 ~~ V22  1.936     1.605  0.122   0.122    0.060    0.060
## 307 V15 ~~  V4  0.273     0.227 -0.028  -0.028   -0.021   -0.021
## 308 V15 ~~  V7  4.236     3.512 -0.089  -0.089   -0.081   -0.081
## 309 V15 ~~  V9  0.187     0.155 -0.028  -0.028   -0.016   -0.016
## 310 V15 ~~ V12  0.013     0.011 -0.007  -0.007   -0.004   -0.004
## 311 V15 ~~ V17  2.475     2.052  0.061   0.061    0.055    0.055
## 312 V15 ~~ V18  0.005     0.004  0.004   0.004    0.003    0.003
## 313 V15 ~~ V19  4.917     4.076 -0.126  -0.126   -0.081   -0.081
## 314 V15 ~~ V21  0.848     0.703  0.061   0.061    0.037    0.037
## 315 V22 ~~  V4  3.244     2.689  0.126   0.126    0.080    0.080
## 316 V22 ~~  V7  0.935     0.775 -0.055  -0.055   -0.042   -0.042
## 317 V22 ~~  V9  0.360     0.298  0.051   0.051    0.025    0.025
## 318 V22 ~~ V12  0.292     0.242  0.043   0.043    0.023    0.023
## 319 V22 ~~ V17  1.964     1.628 -0.072  -0.072   -0.054   -0.054
## 320 V22 ~~ V18  0.326     0.270  0.045   0.045    0.022    0.022
## 321 V22 ~~ V19  0.185     0.154  0.032   0.032    0.017    0.017
## 322 V22 ~~ V21  0.568     0.471  0.066   0.066    0.033    0.033
## 323  V4 ~~  V7 33.523    27.792  0.210   0.210    0.251    0.251
## 324  V4 ~~  V9  1.256     1.041 -0.061  -0.061   -0.047   -0.047
## 325  V4 ~~ V12  0.073     0.061 -0.014  -0.014   -0.011   -0.011
## 326  V4 ~~ V17  2.616     2.169  0.055   0.055    0.064    0.064
## 327  V4 ~~ V18  7.556     6.264 -0.141  -0.141   -0.111   -0.111
## 328  V4 ~~ V19  9.871     8.184 -0.152  -0.152   -0.128   -0.128
## 329  V4 ~~ V21 13.153    10.904  0.201   0.201    0.159    0.159
## 330  V7 ~~  V9  0.258     0.214 -0.023  -0.023   -0.021   -0.021
## 331  V7 ~~ V12  5.983     4.960 -0.101  -0.101   -0.101   -0.101
## 332  V7 ~~ V17  0.427     0.354 -0.018  -0.018   -0.026   -0.026
## 333  V7 ~~ V18 11.652     9.660 -0.144  -0.144   -0.135   -0.135
## 334  V7 ~~ V19  0.121     0.100 -0.014  -0.014   -0.014   -0.014
## 335  V7 ~~ V21 33.636    27.885  0.264   0.264    0.249    0.249
## 336  V9 ~~ V12  0.054     0.045  0.015   0.015    0.009    0.009
## 337  V9 ~~ V17  0.190     0.157 -0.019  -0.019   -0.017   -0.017
## 338  V9 ~~ V18  0.249     0.206 -0.032  -0.032   -0.019   -0.019
## 339  V9 ~~ V19  9.493     7.870  0.187   0.187    0.120    0.120
## 340  V9 ~~ V21  0.349     0.290 -0.041  -0.041   -0.024   -0.024
## 341 V12 ~~ V17  0.006     0.005 -0.003  -0.003   -0.003   -0.003
## 342 V12 ~~ V18  1.256     1.041  0.066   0.066    0.044    0.044
## 343 V12 ~~ V19  2.813     2.332 -0.094  -0.094   -0.066   -0.066
## 344 V12 ~~ V21  0.490     0.406 -0.044  -0.044   -0.029   -0.029
## 345 V17 ~~ V18  3.654     3.029  0.079   0.079    0.073    0.073
## 346 V17 ~~ V19  3.178     2.635 -0.069  -0.069   -0.068   -0.068
## 347 V17 ~~ V21  0.054     0.044 -0.010  -0.010   -0.009   -0.009
## 348 V18 ~~ V19 18.591    15.413  0.250   0.250    0.165    0.165
## 349 V18 ~~ V21  5.592     4.636 -0.152  -0.152   -0.095   -0.095
## 350 V19 ~~ V21  8.588     7.120 -0.178  -0.178   -0.119   -0.119
#Calulating MI
mi3 <- modindices(fit3)
head(mi3[order(mi3$mi, decreasing = TRUE),],10)
##     lhs op rhs     mi mi.scaled    epc sepc.lv sepc.all sepc.nox
## 86   F1 =~ V12 41.026    34.012 -0.332  -0.404   -0.339   -0.339
## 285 V10 ~~ V11 37.190    30.832  0.575   0.575    0.260    0.260
## 335  V7 ~~ V21 33.636    27.885  0.264   0.264    0.249    0.249
## 323  V4 ~~  V7 33.523    27.792  0.210   0.210    0.251    0.251
## 348 V18 ~~ V19 18.591    15.413  0.250   0.250    0.165    0.165
## 176  V3 ~~ V12 16.431    13.622 -0.265  -0.265   -0.129   -0.129
## 275  V5 ~~ V15 15.931    13.207  0.316   0.316    0.164    0.164
## 108  F3 =~  V1 14.440    11.971  0.560   0.246    0.148    0.148
## 103  F2 =~ V12 14.001    11.608 -0.329  -0.274   -0.230   -0.230
## 122  V1 ~~  V3 13.922    11.542  0.248   0.248    0.086    0.086

Model 4

We could model the cross loading of V12 on F1. However, as the text says, we first model the V10 - V11 correlation as their EPC is higher (0.575)

model4 <- '
 F1 =~ V1 + V2 + V3 + V6 + V8 + V13 + V14 + V16 + V20
 F2 =~ V5 + V10 + V11 + V15 + V22
 F3 =~ V4 + V7 + V9 + V12 + V17 + V18 + V19 + V21
 V6 ~~ V16
 V1 ~~ V2
 V10 ~~ V11'
# MLM CFA with V10 correlated with V11
fit4 <- cfa(model4, data = db1, estimator = "MLM")
summary(fit4, fit.measures = TRUE)
## lavaan (0.5-22) converged normally after  47 iterations
## 
##   Number of observations                           372
## 
##   Estimator                                         ML      Robust
##   Minimum Function Test Statistic              487.893     403.049
##   Degrees of freedom                               203         203
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.211
##     for the Satorra-Bentler correction
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             3452.269    2911.466
##   Degrees of freedom                               231         231
##   P-value                                        0.000       0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.912       0.925
##   Tucker-Lewis Index (TLI)                       0.899       0.915
## 
##   Robust Comparative Fit Index (CFI)                         0.924
##   Robust Tucker-Lewis Index (TLI)                            0.913
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -12707.131  -12707.131
##   Loglikelihood unrestricted model (H1)     -12463.184  -12463.184
## 
##   Number of free parameters                         72          72
##   Akaike (AIC)                               25558.261   25558.261
##   Bayesian (BIC)                             25840.421   25840.421
##   Sample-size adjusted Bayesian (BIC)        25611.988   25611.988
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.061       0.051
##   90 Percent Confidence Interval          0.054  0.068       0.045  0.058
##   P-value RMSEA <= 0.05                          0.004       0.351
## 
##   Robust RMSEA                                               0.057
##   90 Percent Confidence Interval                             0.049  0.065
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.065       0.065
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                           Robust.sem
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   F1 =~                                               
##     V1                1.000                           
##     V2                0.878    0.042   21.120    0.000
##     V3                1.068    0.059   18.245    0.000
##     V6                0.770    0.077   10.056    0.000
##     V8                1.214    0.067   18.149    0.000
##     V13               1.086    0.069   15.656    0.000
##     V14               0.885    0.063   14.070    0.000
##     V16               0.727    0.072   10.057    0.000
##     V20               0.811    0.067   12.105    0.000
##   F2 =~                                               
##     V5                1.000                           
##     V10               0.886    0.123    7.195    0.000
##     V11               1.102    0.129    8.547    0.000
##     V15               0.919    0.119    7.705    0.000
##     V22               0.776    0.116    6.676    0.000
##   F3 =~                                               
##     V4                1.000                           
##     V7                0.976    0.129    7.570    0.000
##     V9                1.783    0.324    5.496    0.000
##     V12               1.499    0.241    6.233    0.000
##     V17               1.348    0.199    6.762    0.000
##     V18               1.917    0.299    6.422    0.000
##     V19               1.724    0.289    5.963    0.000
##     V21               1.356    0.228    5.939    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .V6 ~~                                               
##    .V16               0.703    0.122    5.762    0.000
##  .V1 ~~                                               
##    .V2                0.596    0.086    6.896    0.000
##  .V10 ~~                                              
##    .V11               0.519    0.110    4.724    0.000
##   F1 ~~                                               
##     F2                0.751    0.106    7.086    0.000
##     F3               -0.193    0.039   -4.901    0.000
##   F2 ~~                                               
##     F3               -0.190    0.039   -4.884    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                4.366    0.086   50.675    0.000
##    .V2                4.868    0.080   60.741    0.000
##    .V3                3.527    0.090   39.243    0.000
##    .V6                2.707    0.082   32.958    0.000
##    .V8                3.043    0.090   33.972    0.000
##    .V13               3.586    0.087   41.108    0.000
##    .V14               4.027    0.090   44.989    0.000
##    .V16               2.473    0.075   33.137    0.000
##    .V20               2.245    0.073   30.597    0.000
##    .V5                2.199    0.077   28.505    0.000
##    .V10               2.204    0.075   29.388    0.000
##    .V11               2.239    0.079   28.241    0.000
##    .V15               1.769    0.067   26.261    0.000
##    .V22               2.581    0.082   31.495    0.000
##    .V4                6.298    0.052  121.663    0.000
##    .V7                6.312    0.044  144.912    0.000
##    .V9                6.035    0.068   88.446    0.000
##    .V12               5.699    0.062   92.113    0.000
##    .V17               6.406    0.044  144.908    0.000
##    .V18               5.702    0.066   86.338    0.000
##    .V19               5.946    0.062   96.417    0.000
##    .V21               5.852    0.066   89.138    0.000
##     F1                0.000                           
##     F2                0.000                           
##     F3                0.000                           
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                1.276    0.105   12.165    0.000
##    .V2                1.245    0.098   12.680    0.000
##    .V3                1.313    0.110   11.889    0.000
##    .V6                1.626    0.142   11.417    0.000
##    .V8                0.799    0.083    9.622    0.000
##    .V13               1.080    0.124    8.693    0.000
##    .V14               1.817    0.145   12.568    0.000
##    .V16               1.285    0.117   11.000    0.000
##    .V20               1.024    0.137    7.500    0.000
##    .V5                1.404    0.181    7.776    0.000
##    .V10               1.457    0.150    9.713    0.000
##    .V11               1.358    0.159    8.521    0.000
##    .V15               1.005    0.142    7.101    0.000
##    .V22               2.006    0.182   11.004    0.000
##    .V4                0.802    0.113    7.115    0.000
##    .V7                0.521    0.074    6.998    0.000
##    .V9                1.116    0.149    7.480    0.000
##    .V12               0.988    0.125    7.880    0.000
##    .V17               0.376    0.057    6.632    0.000
##    .V18               0.912    0.143    6.375    0.000
##    .V19               0.840    0.111    7.596    0.000
##    .V21               1.246    0.134    9.321    0.000
##     F1                1.477    0.150    9.851    0.000
##     F2                0.803    0.171    4.700    0.000
##     F3                0.192    0.050    3.823    0.000
#Calulating MI
mi4 <- modindices(fit4)
head(mi4[order(mi4$mi, decreasing = TRUE),],10)
##     lhs op rhs     mi mi.scaled    epc sepc.lv sepc.all sepc.nox
## 87   F1 =~ V12 40.621    33.557 -0.331  -0.402   -0.337   -0.337
## 335  V7 ~~ V21 33.404    27.595  0.262   0.262    0.247    0.247
## 323  V4 ~~  V7 33.318    27.524  0.209   0.209    0.250    0.250
## 348 V18 ~~ V19 18.400    15.200  0.248   0.248    0.164    0.164
## 177  V3 ~~ V12 16.749    13.837 -0.268  -0.268   -0.130   -0.130
## 109  F3 =~  V1 14.481    11.963  0.561   0.246    0.148    0.148
## 104  F2 =~ V12 14.270    11.789 -0.324  -0.290   -0.243   -0.243
## 123  V1 ~~  V3 13.974    11.544  0.249   0.249    0.087    0.087
## 329  V4 ~~ V21 13.190    10.896  0.201   0.201    0.160    0.160
## 333  V7 ~~ V18 12.056     9.960 -0.147  -0.147   -0.137   -0.137

Model 5

Well, if you have had the patience to last till here, this is the last model. Note that in the Model formula for F1, an additional V12 has been added at the end.

model5 <- '
 F1 =~ V1 + V2 + V3 + V6 + V8 + V13 + V14 + V16 + V20 + V12
 F2 =~ V5 + V10 + V11 + V15 + V22
 F3 =~ V4 + V7 + V9 + V12 + V17 + V18 + V19 + V21
 V6 ~~ V16
 V1 ~~ V2
 V10 ~~ V11'
#MLM CFA with crossloading of F1 with V12
fit5 <- cfa(model5, data = db1, estimator = "MLM")
summary(fit5, fit.measures = TRUE)
## lavaan (0.5-22) converged normally after  52 iterations
## 
##   Number of observations                           372
## 
##   Estimator                                         ML      Robust
##   Minimum Function Test Statistic              446.419     369.998
##   Degrees of freedom                               202         202
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.207
##     for the Satorra-Bentler correction
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             3452.269    2911.466
##   Degrees of freedom                               231         231
##   P-value                                        0.000       0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.924       0.937
##   Tucker-Lewis Index (TLI)                       0.913       0.928
## 
##   Robust Comparative Fit Index (CFI)                         0.936
##   Robust Tucker-Lewis Index (TLI)                            0.927
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -12686.394  -12686.394
##   Loglikelihood unrestricted model (H1)     -12463.184  -12463.184
## 
##   Number of free parameters                         73          73
##   Akaike (AIC)                               25518.787   25518.787
##   Bayesian (BIC)                             25804.867   25804.867
##   Sample-size adjusted Bayesian (BIC)        25573.260   25573.260
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.057       0.047
##   90 Percent Confidence Interval          0.050  0.064       0.040  0.054
##   P-value RMSEA <= 0.05                          0.052       0.735
## 
##   Robust RMSEA                                               0.052
##   90 Percent Confidence Interval                             0.044  0.060
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.054       0.054
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                           Robust.sem
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   F1 =~                                               
##     V1                1.000                           
##     V2                0.878    0.041   21.287    0.000
##     V3                1.073    0.058   18.435    0.000
##     V6                0.764    0.077    9.978    0.000
##     V8                1.215    0.066   18.357    0.000
##     V13               1.072    0.070   15.395    0.000
##     V14               0.880    0.063   14.052    0.000
##     V16               0.727    0.073   10.018    0.000
##     V20               0.806    0.067   12.111    0.000
##     V12              -0.316    0.054   -5.882    0.000
##   F2 =~                                               
##     V5                1.000                           
##     V10               0.889    0.124    7.168    0.000
##     V11               1.105    0.130    8.519    0.000
##     V15               0.921    0.120    7.660    0.000
##     V22               0.776    0.117    6.659    0.000
##   F3 =~                                               
##     V4                1.000                           
##     V7                0.973    0.128    7.592    0.000
##     V9                1.763    0.317    5.554    0.000
##     V12               1.131    0.202    5.600    0.000
##     V17               1.327    0.198    6.708    0.000
##     V18               1.890    0.291    6.489    0.000
##     V19               1.695    0.286    5.925    0.000
##     V21               1.342    0.224    5.985    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .V6 ~~                                               
##    .V16               0.706    0.122    5.765    0.000
##  .V1 ~~                                               
##    .V2                0.588    0.086    6.861    0.000
##  .V10 ~~                                              
##    .V11               0.517    0.110    4.713    0.000
##   F1 ~~                                               
##     F2                0.747    0.106    7.029    0.000
##     F3               -0.167    0.038   -4.350    0.000
##   F2 ~~                                               
##     F3               -0.181    0.038   -4.781    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                4.366    0.086   50.675    0.000
##    .V2                4.868    0.080   60.741    0.000
##    .V3                3.527    0.090   39.243    0.000
##    .V6                2.707    0.082   32.958    0.000
##    .V8                3.043    0.090   33.972    0.000
##    .V13               3.586    0.087   41.108    0.000
##    .V14               4.027    0.090   44.989    0.000
##    .V16               2.473    0.075   33.137    0.000
##    .V20               2.245    0.073   30.597    0.000
##    .V12               5.699    0.062   92.113    0.000
##    .V5                2.199    0.077   28.505    0.000
##    .V10               2.204    0.075   29.388    0.000
##    .V11               2.239    0.079   28.241    0.000
##    .V15               1.769    0.067   26.261    0.000
##    .V22               2.581    0.082   31.495    0.000
##    .V4                6.298    0.052  121.663    0.000
##    .V7                6.312    0.044  144.912    0.000
##    .V9                6.035    0.068   88.446    0.000
##    .V17               6.406    0.044  144.908    0.000
##    .V18               5.702    0.066   86.338    0.000
##    .V19               5.946    0.062   96.417    0.000
##    .V21               5.852    0.066   89.138    0.000
##     F1                0.000                           
##     F2                0.000                           
##     F3                0.000                           
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                1.268    0.103   12.252    0.000
##    .V2                1.238    0.098   12.614    0.000
##    .V3                1.285    0.108   11.923    0.000
##    .V6                1.636    0.143   11.458    0.000
##    .V8                0.783    0.080    9.815    0.000
##    .V13               1.115    0.128    8.681    0.000
##    .V14               1.822    0.144   12.634    0.000
##    .V16               1.281    0.116   11.032    0.000
##    .V20               1.031    0.137    7.509    0.000
##    .V12               0.898    0.105    8.545    0.000
##    .V5                1.407    0.181    7.761    0.000
##    .V10               1.455    0.150    9.697    0.000
##    .V11               1.355    0.160    8.492    0.000
##    .V15               1.004    0.142    7.084    0.000
##    .V22               2.008    0.182   11.007    0.000
##    .V4                0.795    0.112    7.098    0.000
##    .V7                0.515    0.074    6.988    0.000
##    .V9                1.108    0.150    7.397    0.000
##    .V17               0.374    0.056    6.685    0.000
##    .V18               0.906    0.143    6.327    0.000
##    .V19               0.838    0.113    7.426    0.000
##    .V21               1.240    0.133    9.354    0.000
##     F1                1.486    0.150    9.919    0.000
##     F2                0.800    0.171    4.678    0.000
##     F3                0.199    0.051    3.891    0.000
#Modification indices
mi5 <- modindices(fit5)
head(mi5[order(mi5$mi, decreasing = TRUE),],10)
##     lhs op rhs     mi mi.scaled    epc sepc.lv sepc.all sepc.nox
## 340  V7 ~~ V21 32.503    26.939  0.259   0.259    0.244    0.244
## 330  V4 ~~  V7 32.009    26.530  0.204   0.204    0.244    0.244
## 348 V18 ~~ V19 18.274    15.145  0.250   0.250    0.166    0.166
## 109  F3 =~  V1 14.649    12.141  0.541   0.241    0.145    0.145
## 338  V7 ~~ V18 14.409    11.942 -0.161  -0.161   -0.151   -0.151
## 219 V13 ~~ V12 13.063    10.826  0.212   0.212    0.106    0.106
## 123  V1 ~~  V3 12.963    10.744  0.237   0.237    0.083    0.083
## 335  V4 ~~ V21 12.460    10.327  0.195   0.195    0.155    0.155
## 334  V4 ~~ V19 11.555     9.577 -0.165  -0.165   -0.139   -0.139
## 169  V3 ~~ V12 11.417     9.463 -0.210  -0.210   -0.102   -0.102

Thats all folks!