knitr::opts_chunk$set(cache = TRUE,echo=T)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
Because my Rstudio was set system locale as Mandarin Chinese, if not change system locale as English,
it’ll have some problem to load data into Rstudio
Sys.setlocale("LC_ALL", "English") ##important ##if `EOF within quoted string` occured
## [1] "LC_COLLATE=English_United States.1252;LC_CTYPE=English_United States.1252;LC_MONETARY=English_United States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252"
if(!file.exists("repdata_data_StormData.csv")){
url<-"https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
download.file(url,destfile ="repdata_data_StormData.csv.bz2" )
}
storm<-read.csv(bzfile("repdata_data_StormData.csv.bz2"))
dim(storm)
## [1] 902297 37
head(storm)
## STATE__ BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1 1 4/18/1950 0:00:00 0130 CST 97 MOBILE AL
## 2 1 4/18/1950 0:00:00 0145 CST 3 BALDWIN AL
## 3 1 2/20/1951 0:00:00 1600 CST 57 FAYETTE AL
## 4 1 6/8/1951 0:00:00 0900 CST 89 MADISON AL
## 5 1 11/15/1951 0:00:00 1500 CST 43 CULLMAN AL
## 6 1 11/15/1951 0:00:00 2000 CST 77 LAUDERDALE AL
## EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO 0 0
## 2 TORNADO 0 0
## 3 TORNADO 0 0
## 4 TORNADO 0 0
## 5 TORNADO 0 0
## 6 TORNADO 0 0
## COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1 NA 0 14.0 100 3 0 0
## 2 NA 0 2.0 150 2 0 0
## 3 NA 0 0.1 123 2 0 0
## 4 NA 0 0.0 100 2 0 0
## 5 NA 0 0.0 150 2 0 0
## 6 NA 0 1.5 177 2 0 0
## INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1 15 25.0 K 0
## 2 0 2.5 K 0
## 3 2 25.0 K 0
## 4 2 2.5 K 0
## 5 2 2.5 K 0
## 6 6 2.5 K 0
## LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1 3040 8812 3051 8806 1
## 2 3042 8755 0 0 2
## 3 3340 8742 0 0 3
## 4 3458 8626 0 0 4
## 5 3412 8642 0 0 5
## 6 3450 8748 0 0 6
str(storm)
## 'data.frame': 902297 obs. of 37 variables:
## $ STATE__ : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_DATE : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
## $ BGN_TIME : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
## $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
## $ STATE : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ EVTYPE : Factor w/ 985 levels " HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
## $ BGN_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ BGN_AZI : Factor w/ 35 levels ""," N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_DATE : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_TIME : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 0 ...
## $ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ END_AZI : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LENGTH : num 14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
## $ WIDTH : num 100 150 123 100 150 177 33 33 100 100 ...
## $ F : int 3 2 2 2 2 2 2 1 3 3 ...
## $ MAG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ FATALITIES: num 0 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ WFO : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ ZONENAMES : Factor w/ 25112 levels ""," "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE_E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
## $ REMARKS : Factor w/ 436781 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
names(storm)<-tolower(names(storm))
names(storm)
## [1] "state__" "bgn_date" "bgn_time" "time_zone" "county"
## [6] "countyname" "state" "evtype" "bgn_range" "bgn_azi"
## [11] "bgn_locati" "end_date" "end_time" "county_end" "countyendn"
## [16] "end_range" "end_azi" "end_locati" "length" "width"
## [21] "f" "mag" "fatalities" "injuries" "propdmg"
## [26] "propdmgexp" "cropdmg" "cropdmgexp" "wfo" "stateoffic"
## [31] "zonenames" "latitude" "longitude" "latitude_e" "longitude_"
## [36] "remarks" "refnum"
health<-storm%>%
mutate(casualty=fatalities+injuries)%>%
group_by(evtype)%>%
summarize(total=sum(casualty))%>%
arrange(desc(total))
the class of health data is not the data.frame, I want to convert it to data.frame
class(health)
## [1] "tbl_df" "tbl" "data.frame"
health<-as.data.frame(health)
health<-health[1:20,]
levels(storm$cropdmgexp)
## [1] "" "?" "0" "2" "B" "k" "K" "m" "M"
levels(storm$propdmgexp)
## [1] "" "-" "?" "+" "0" "1" "2" "3" "4" "5" "6" "7" "8" "B" "h" "H" "K"
## [18] "m" "M"
We can see the levels of cropdmgexp and prodmgexp are composed by several symbols
B==billion, M==million, K==thousand, H==hundred, the other symbol are mean unknown, or not available.
I want to convert symbel to number so it’ll be more easy to deal with
levels(storm$cropdmgexp)<-c(0,0,0,0,1000000000,1000,1000,1000000,1000000)
levels(storm$propdmgexp)<-c(0,0,0,0,0,0,0,0,0,0,0,0,0,1000000000,100,100,1000,1000000,1000000)
levels(storm$cropdmgexp)
## [1] "0" "1e+09" "1000" "1e+06"
levels(storm$propdmgexp)
## [1] "0" "1e+09" "100" "1000" "1e+06"
storm$cropdmgexp<-as.numeric(as.character(storm$cropdmgexp))
storm$propdmgexp<-as.numeric(as.character(storm$propdmgexp))
damage<-storm%>%
group_by(evtype)%>%
summarize(total=sum((cropdmg*cropdmgexp)+(propdmg*propdmgexp)))%>%
arrange(desc(total))
damage<-as.data.frame(damage)
damage<-damage[1:20,]
ggplot(health,aes(reorder(evtype,total),total,fill=evtype))+
geom_bar(stat="identity")+
theme(legend.position = "none")+
labs(x="event type",y="total fatalities/injuries",title="The total number of fatalities and injuries")+
coord_flip()
health
## evtype total
## 1 TORNADO 96979
## 2 EXCESSIVE HEAT 8428
## 3 TSTM WIND 7461
## 4 FLOOD 7259
## 5 LIGHTNING 6046
## 6 HEAT 3037
## 7 FLASH FLOOD 2755
## 8 ICE STORM 2064
## 9 THUNDERSTORM WIND 1621
## 10 WINTER STORM 1527
## 11 HIGH WIND 1385
## 12 HAIL 1376
## 13 HURRICANE/TYPHOON 1339
## 14 HEAVY SNOW 1148
## 15 WILDFIRE 986
## 16 THUNDERSTORM WINDS 972
## 17 BLIZZARD 906
## 18 FOG 796
## 19 RIP CURRENT 600
## 20 WILD/FOREST FIRE 557
the type of most harmful to population health: TORNADO,
caused 96979 people injuried or fatalitied
the second is EXCESSIVE HEAT, endangered 8428 people’s life
ggplot(damage,aes(reorder(evtype,total),total,fill=evtype))+
geom_bar(stat="identity")+
theme(legend.position = "none")+
labs(x="event type",y="total damage",title="The total number of damage")+
coord_flip()
damage
## evtype total
## 1 FLOOD 150319678250
## 2 HURRICANE/TYPHOON 71913712800
## 3 TORNADO 57352113590
## 4 STORM SURGE 43323541000
## 5 HAIL 18758221670
## 6 FLASH FLOOD 17562128610
## 7 DROUGHT 15018672000
## 8 HURRICANE 14610229010
## 9 RIVER FLOOD 10148404500
## 10 ICE STORM 8967041310
## 11 TROPICAL STORM 8382236550
## 12 WINTER STORM 6715441250
## 13 HIGH WIND 5908617560
## 14 WILDFIRE 5060586800
## 15 TSTM WIND 5038935790
## 16 STORM SURGE/TIDE 4642038000
## 17 THUNDERSTORM WIND 3897964190
## 18 HURRICANE OPAL 3191846000
## 19 WILD/FOREST FIRE 3108626330
## 20 HEAVY RAIN/SEVERE WEATHER 2500000000
the type of greatest economic consequences: FLOOD, caused 150319678250 dollars loss
second is HURRICANE/TYPHOON, caused 71913712800 dollars loss