n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
for(i in 1:n_sim){
s = sim_phyl()
pars = c(8,1,70)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
qplot(p[,1], geom="histogram")
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.4548 0.7241 0.8248 0.8261 0.9044 1.2450
qplot(p[,2], geom="histogram")
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.05803 0.09153 0.10210 0.10280 0.11210 0.15170
qplot(p[p[,3]<80,3], geom="histogram")
summary(p[,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.600e+01 3.900e+01 4.000e+01 1.268e+12 4.100e+01 1.268e+14
length(p[p[,3]<80,3])
## [1] 99
and if I start closer to the solution?
n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
for(i in 1:n_sim){
s = sim_phyl()
pars = c(0.9,0.2,50)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
qplot(p[,1], geom="histogram")
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5430 0.7597 0.8330 0.8526 0.9688 1.2770
qplot(p[,2], geom="histogram")
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.06448 0.09253 0.10170 0.10290 0.11140 0.15390
qplot(p[p[,3]<80,3], geom="histogram")
summary(p[,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 34.39 39.11 39.97 39.83 40.50 51.37
now with different parameters
n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
for(i in 1:n_sim){
s = sim_phyl(mu0 = 0.2)
pars = pars = c(8,1,70)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
qplot(p[,1], geom="histogram")
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.4877 0.7659 0.8490 0.8642 0.9379 1.4440
qplot(p[,2], geom="histogram")
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1524 0.1831 0.2024 0.2021 0.2186 0.2555
qplot(p[p[,3]<80,3], geom="histogram")
summary(p[,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.000e+01 3.800e+01 4.000e+01 3.633e+12 4.200e+01 3.633e+14
n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
for(i in 1:n_sim){
s = sim_phyl(mu0 = 0.4)
pars = pars = c(8,1,70)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
qplot(p[,1], geom="histogram")
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5616 0.8014 0.8886 0.8978 0.9756 1.4760
qplot(p[,2], geom="histogram")
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3136 0.3684 0.3931 0.4017 0.4321 0.5491
qplot(p[p[,3]<80,3], geom="histogram")
summary(p[,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.000e+00 3.500e+01 3.900e+01 4.050e+12 4.500e+01 2.851e+14
n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
for(i in 1:n_sim){
s = sim_phyl(mu0 = 0)
pars = pars = c(8,1,70)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
qplot(p[,1], geom="histogram")
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.4797 0.6973 0.7894 0.8085 0.9273 1.2790
qplot(p[,2], geom="histogram")
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.092e-18 8.668e-18 1.996e-17 2.441e-17 3.245e-17 1.079e-16
qplot(p[p[,3]<80,3], geom="histogram")
summary(p[,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 38.57 39.70 40.11 40.94 41.61 53.49
Crown age = 10. Note that we have to drop mall trees now
n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
k=0
for(i in 1:n_sim){
s = sim_phyl(ct = 10)
if(s$newick$Nnode>5){
pars = c(8,1,70)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
else{
i = i-1
k=k+1}
}
k
## [1] 1
qplot(p[,1], geom="histogram")
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2891 0.7026 0.8489 0.8187 0.9452 1.3160
qplot(p[,2], geom="histogram")
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.02791 0.08812 0.09947 0.10170 0.11410 0.20330
qplot(p[p[,3]<80,3], geom="histogram")
summary(p[,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.100e+01 3.800e+01 4.100e+01 2.783e+13 4.300e+01 9.057e+14
length(p[p[,3]<80,3])
## [1] 90
now with different parameters
n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
k= 0
for(i in 1:n_sim){
s = sim_phyl(mu0 = 0.2, ct = 10)
if(s$newick$Nnode>5){
pars = c(8,1,70)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
else{
i = i-1
k=k+1}
}
k
## [1] 1
qplot(p[,1], geom="histogram")
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1836 0.7647 0.8930 0.8771 0.9977 1.3360
qplot(p[,2], geom="histogram")
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.1755 0.1995 0.2011 0.2342 0.3061
qplot(p[p[,3]<80,3], geom="histogram")
summary(p[,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.000e+00 3.500e+01 4.000e+01 3.087e+12 4.300e+01 1.056e+14
n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
k=0
for(i in 1:n_sim){
s = sim_phyl(mu0 = 0.4, ct = 10)
if(s$newick$Nnode>15){
pars = c(8,1,70)
p[i-k,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
else{
k=k+1}
}
k
## [1] 7
qplot(p[,1], geom="histogram")
## Warning: Removed 7 rows containing non-finite values (stat_bin).
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.6291 0.9186 1.0160 1.0230 1.1410 1.8120 7
qplot(p[,2], geom="histogram")
## Warning: Removed 7 rows containing non-finite values (stat_bin).
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.2911 0.3589 0.3899 0.3983 0.4241 0.6295 7
qplot(p[p[,3]<80,3], geom="histogram")
## Warning: Removed 7 rows containing non-finite values (stat_bin).
summary(p[,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 5.000e+00 2.300e+01 3.000e+01 1.347e+12 4.200e+01 9.584e+13 7
n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
k=0
for(i in 1:n_sim){
s = sim_phyl(mu0 = 0,ct = 10)
if(s$newick$Nnode>5){
pars = c(8,1,70)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
else{
i = i-1
k=k+1}
}
k
## [1] 0
qplot(p[,1], geom="histogram")
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.4239 0.7077 0.7982 0.8222 0.9371 1.3560
qplot(p[,2], geom="histogram")
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.036e-20 6.801e-18 2.369e-17 2.638e-17 3.842e-17 1.075e-16
qplot(p[p[,3]<80,3], geom="histogram")
summary(p[,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.000e+01 3.900e+01 4.000e+01 2.911e+10 4.200e+01 2.911e+12
Crown age = 4. Note that we have to drop mall trees now
n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
k=0
for(i in 1:n_sim){
s = sim_phyl(ct = 5)
if(s$newick$Nnode>5){
pars = c(8,1,70)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
else{
i = i-1
k=k+1}
}
k
## [1] 14
qplot(p[,1], geom="histogram")
## Warning: Removed 14 rows containing non-finite values (stat_bin).
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.4243 0.7945 0.9750 0.9876 1.1600 1.5310 14
qplot(p[,2], geom="histogram")
## Warning: Removed 14 rows containing non-finite values (stat_bin).
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.00000 0.06813 0.09988 0.10620 0.14320 0.33190 14
qplot(p[p[,3]<80,3], geom="histogram")
## Warning: Removed 14 rows containing non-finite values (stat_bin).
summary(p[,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 8.000e+00 2.300e+01 3.200e+01 3.849e+13 1.080e+02 6.001e+14 14
length(p[p[,3]<80,3])
## [1] 76
now with different parameters
n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
k= 0
for(i in 1:n_sim){
s = sim_phyl(mu0 = 0.2, ct = 5)
if(s$newick$Nnode>5){
pars = c(8,1,70)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
else{
i = i-1
k=k+1}
}
k
## [1] 18
qplot(p[,1], geom="histogram")
## Warning: Removed 18 rows containing non-finite values (stat_bin).
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.5818 0.9055 1.1290 1.2170 1.4420 3.2360 18
qplot(p[,2], geom="histogram")
## Warning: Removed 18 rows containing non-finite values (stat_bin).
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0000 0.1588 0.2163 0.2268 0.2629 0.6343 18
qplot(p[p[,3]<80,3], geom="histogram")
## Warning: Removed 18 rows containing non-finite values (stat_bin).
summary(p[,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 3.000e+00 1.100e+01 2.300e+01 6.084e+13 4.200e+01 1.170e+15 18
n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
k=0
while(i < n_sim){
s = sim_phyl(mu0 = 0.4, ct = 5,seed=i)
if(s$newick$Nnode>3){
pars = c(8,1,70)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
i=i+1
}
else{
k=k+1}
}
k
n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
k=0
g=0
for(i in 1:n_sim){
s = sim_phyl(mu0 = 0.4, ct = 5,seed=i)
if(s$newick$Nnode>5){
g = g+1
}
else{
k=k+1}
}
k
g
qplot(p[,1], geom="histogram")
summary(p[,1])
qplot(p[,2], geom="histogram")
summary(p[,2])
qplot(p[p[,3]<80,3], geom="histogram")
summary(p[,3])
n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
k=0
for(i in 1:n_sim){
s = sim_phyl(mu0 = 0,ct = 5)
if(s$newick$Nnode>5){
pars = c(8,1,70)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
else{
i = i-1
k=k+1}
}
k
qplot(p[,1], geom="histogram")
summary(p[,1])
qplot(p[,2], geom="histogram")
summary(p[,2])
qplot(p[p[,3]<80,3], geom="histogram")
summary(p[,3])