n_sim = 10000
p=matrix(ncol=3,nrow=n_sim)
for(i in 1:n_sim){
s = sim_phyl()
pars = c(8,1,70)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
qplot(p[,1], geom="histogram")
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3408 0.7474 0.8378 0.8470 0.9379 1.6640
qplot(p[,2], geom="histogram")
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.03678 0.08971 0.10100 0.10170 0.11260 0.29200
qplot(p[p[,3]<80,3], geom="histogram")
summary(p[,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.000e+00 3.900e+01 4.000e+01 7.454e+11 4.100e+01 7.538e+14
length(p[p[,3]<60,3])
## [1] 9936
if we do it for 100 sumulations only? (like the paper)
n_sim = 100
p=matrix(ncol=3,nrow=n_sim)
for(i in 1:n_sim){
s = sim_phyl()
pars = c(8,1,70)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
qplot(p[,1], geom="histogram")
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3621 0.7390 0.8554 0.8415 0.9471 1.2130
qplot(p[,2], geom="histogram")
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.06845 0.09033 0.10160 0.10280 0.11290 0.14280
qplot(p[p[,3]<80,3], geom="histogram")
summary(p[,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.500e+01 3.900e+01 4.000e+01 6.379e+11 4.100e+01 5.103e+13
length(p[p[,3]<60,3])
## [1] 98
and if I start closer to the solution?
n_sim = 10000
p=matrix(ncol=3,nrow=n_sim)
for(i in 1:n_sim){
s = sim_phyl()
pars = c(0.9,0.2,50)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
qplot(p[,1], geom="histogram")
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.4110 0.7565 0.8483 0.8584 0.9500 2.1570
qplot(p[,2], geom="histogram")
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1128 0.1847 0.2009 0.2022 0.2177 0.4522
qplot(p[p[,3]<60,3], geom="histogram")
summary(p[p[,3]<60,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.539 37.870 39.860 39.710 41.630 59.850
now with different parameters
n_sim = 10000
p=matrix(ncol=3,nrow=n_sim)
for(i in 1:n_sim){
s = sim_phyl(mu0 = 0.2)
pars = c(0.9,0.2,50)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
qplot(p[,1], geom="histogram")
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.4334 0.7986 0.8926 0.9048 0.9938 2.3010
qplot(p[,2], geom="histogram")
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2178 0.3751 0.4007 0.4045 0.4287 0.6999
qplot(p[p[,3]<60,3], geom="histogram")
summary(p[p[,3]<60,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.827 31.910 37.600 36.420 42.590 59.990
n_sim = 10000
p=matrix(ncol=3,nrow=n_sim)
for(i in 1:n_sim){
s = sim_phyl(mu0 = 0.4)
pars = c(0.9,0.2,50)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
qplot(p[,1], geom="histogram")
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2415 0.6972 0.7867 0.8011 0.8906 1.6400
qplot(p[,2], geom="histogram")
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000e+00 9.000e-18 1.920e-17 1.056e-16 3.440e-17 8.169e-13
qplot(p[p[,3]<60,3], geom="histogram")
summary(p[p[,3]<60,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 37.09 39.68 40.24 40.88 41.31 59.91
n_sim = 10000
p=matrix(ncol=3,nrow=n_sim)
for(i in 1:n_sim){
s = sim_phyl(mu0 = 0)
pars = c(0.9,0.2,50)
p[i,] = subplex(par = pars, fn = llik, n = s$n, E = s$E, t = s$wt)$par
}
qplot(p[,1], geom="histogram")
summary(p[,1])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2415 0.6972 0.7867 0.8011 0.8906 1.6400
qplot(p[,2], geom="histogram")
summary(p[,2])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000e+00 9.000e-18 1.920e-17 1.056e-16 3.440e-17 8.169e-13
qplot(p[p[,3]<60,3], geom="histogram")
summary(p[p[,3]<60,3])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 37.09 39.68 40.24 40.88 41.31 59.91