This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the code chunk to prevent printing of the R code that generated the plot.
Text can be decorated with bold or italics. It is also possible to
Be sure to put a space after the * when you are creating bullets and a space after # when creating section headers, but not between $ and the mathematical formulas.
a <- c(1.8, 4.5) #numeric
b <- c(1 + 2i, 3 - 6i) #complex
d <- c(23, 44) #integer
e <- vector("logical", length = 5)
class(qt) # to check the class of a vector
## [1] "function"
my_list <- list(22, "ab", TRUE, 1 + 2i) # Vector with elements of differenttypes
my_matrix <- matrix(1:6, nrow=3, ncol=2) #matrix
dim(my_matrix)
## [1] 3 2
bar <- 0:5
class(bar)
## [1] "integer"
as.numeric(bar)
## [1] 0 1 2 3 4 5
class(bar)
## [1] "integer"
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
echo = FALSE
parameter was added to the code chunk to prevent printing of the R code that generated the plot.head(cars)
## speed dist
## 1 4 2
## 2 4 10
## 3 7 4
## 4 7 22
## 5 8 16
## 6 9 10
require(knitr) opts_chunk$set( tidy=FALSE, # display code as typed size=“small” # slightly smaller font for code )
favstats(~Sepal.Length, data=iris)
## min Q1 median Q3 max mean sd n missing
## 4.3 5.1 5.8 6.4 7.9 5.843333 0.8280661 150 0
favstats(age~substance|sex,data=HELPrct)
## sex min Q1 median Q3 max mean sd n missing
## 1 alcohol.female 23 33 37.0 45.0 58 39.16667 7.980333 36 0
## 2 cocaine.female 24 31 34.0 38.0 49 34.85366 6.195002 41 0
## 3 heroin.female 21 29 34.0 39.0 55 34.66667 8.035839 30 0
## 4 alcohol.male 20 32 38.0 42.0 58 37.95035 7.575644 141 0
## 5 cocaine.male 23 30 33.0 37.0 60 34.36036 6.889772 111 0
## 6 heroin.male 19 27 32.5 39.0 53 33.05319 7.973568 94 0
## 7 female 21 31 35.0 40.5 58 36.25234 7.584858 107 0
## 8 male 19 30 35.0 40.0 60 35.46821 7.750110 346 0
mean(age~substance|sex,data=HELPrct,.format="table") #tabular form
## substance sex mean
## 1 alcohol female 39.16667
## 2 alcohol male 37.95035
## 3 cocaine female 34.85366
## 4 cocaine male 34.36036
## 5 heroin female 34.66667
## 6 heroin male 33.05319
tally(sex~substance,data=HELPrct)
## substance
## sex alcohol cocaine heroin
## female 36 41 30
## male 141 111 94
summary(sex~substance,data=HELPrct)
## Length Class Mode
## 3 formula call
bwplot(age~substance|sex,data=HELPrct, .format="table")
# Graphical Summaries one variable
histogram(~age,data=HELPrct)
densityplot(~age,data=HELPrct)
bwplot(~age,data=HELPrct)
qqmath(~age,data=HELPrct)
freqpolygon(~age,data=HELPrct)
bargraph(~age,data=HELPrct)
# graphical summaries two variables * i1 average numebr of drinks consumed per day in past 30 days
xyplot(i1~age,data=HELPrct)
bwplot(age~substance,data=HELPrct)
# add groups = group to overlay * use y~x|z to create multipanel plots
densityplot(~age|sex,data=HELPrct,groups=substance, auto.key=TRUE)
names(KidsFeet) # 4th graders feet
## [1] "name" "birthmonth" "birthyear" "length" "width"
## [6] "sex" "biggerfoot" "domhand"
#?KidsFeet
xpnorm( 700, mean=500, sd=100)
##
## If X ~ N(500, 100), then
##
## P(X <= 700) = P(Z <= 2) = 0.9772499
## P(X > 700) = P(Z > 2) = 0.02275013
## [1] 0.9772499
xpnorm( c(300, 700), mean=500, sd=100)
##
## If X ~ N(500, 100), then
##
## P(X <= 300) = P(Z <= -2) = 0.02275013
## P(X <= 700) = P(Z <= 2) = 0.97724987
## P(X > 300) = P(Z > -2) = 0.97724987
## P(X > 700) = P(Z > 2) = 0.02275013
## [1] 0.02275013 0.97724987
a<-lm(age~substance*sex, data=HELPrct)
plot(a)