load("sens_esp_23022017.RData")
#sex 1 es varon 0 mujer
names(todo)
##   [1] "escuela"        "ci_fdn"         "p1"             "p2"            
##   [5] "p3"             "p4"             "p5"             "p6"            
##   [9] "p7"             "p8"             "p9"             "p10"           
##  [13] "p11"            "p12"            "p13"            "coor_izq"      
##  [17] "coor_cruzaizq"  "p16"            "p17"            "p18"           
##  [21] "p19"            "p20"            "p21"            "p22"           
##  [25] "p23"            "p24"            "p25"            "p26"           
##  [29] "p27"            "p28"            "p29"            "p30"           
##  [33] "p31"            "p32"            "p33"            "p34"           
##  [37] "p35"            "p36"            "p37"            "p38"           
##  [41] "p39"            "p40"            "p41"            "p42"           
##  [45] "p43"            "p44"            "p45"            "p46"           
##  [49] "p47"            "p48"            "p49"            "p50"           
##  [53] "p51"            "p52"            "p53"            "p54"           
##  [57] "p55"            "p56"            "p57"            "p58"           
##  [61] "p59"            "p60"            "p61"            "p62"           
##  [65] "p63"            "p64"            "p65"            "p66"           
##  [69] "p67"            "p68"            "p69"            "p70"           
##  [73] "p71"            "p72"            "p73"            "p74"           
##  [77] "p75"            "p76"            "p77"            "p78"           
##  [81] "p79"            "p80"            "p81"            "p82"           
##  [85] "p83"            "p84"            "p85"            "p86"           
##  [89] "p87"            "p88"            "p89"            "p90"           
##  [93] "p91"            "p92"            "p93"            "p94"           
##  [97] "p95"            "p96"            "p97"            "p98"           
## [101] "p99"            "p100"           "p101"           "tot.ci"        
## [105] "sexo"           "edmes"          "totcom.ci"      "totmot.ci"     
## [109] "ttmotmf.ci"     "totad.ci"       "totps.ci"       "mot_izq"       
## [113] "mot_cruzaizq"   "cor_izq"        "cor_cruzaizq"   "leng_izq"      
## [117] "leng_cruzaizq"  "soc_izq"        "soc_cruzaizq"   "nbi5"          
## [121] "nbi4"           "nbi3"           "nbi2"           "nbi1"          
## [125] "cuantas"        "tipo"           "peso"           "sexo.rec"      
## [129] "totps.ci.rec"   "totad.ci.rec"   "ttmotmf.ci.rec" "totmot.ci.rec" 
## [133] "totcom.ci.rec"  "nbi.rec"
summary(todo[,c(105:127)])
##       sexo            edmes         totcom.ci        totmot.ci      
##  Min.   :0.0000   Min.   : 5.00   Min.   : 65.00   Min.   :  65.00  
##  1st Qu.:0.0000   1st Qu.:26.00   1st Qu.: 79.00   1st Qu.:  83.75  
##  Median :1.0000   Median :40.00   Median : 89.00   Median :  94.00  
##  Mean   :0.5359   Mean   :38.77   Mean   : 88.11   Mean   :  95.53  
##  3rd Qu.:1.0000   3rd Qu.:51.00   3rd Qu.: 97.00   3rd Qu.: 101.00  
##  Max.   :1.0000   Max.   :71.00   Max.   :128.00   Max.   :1048.00  
##                   NA's   :7       NA's   :6        NA's   :6        
##    ttmotmf.ci        totad.ci         totps.ci        mot_izq   
##  Min.   : 65.00   Min.   : 65.00   Min.   : 65.0   no pasa: 61  
##  1st Qu.: 81.00   1st Qu.: 87.00   1st Qu.: 84.0   pasa   :323  
##  Median : 93.00   Median : 95.50   Median : 94.5   NA's   :  6  
##  Mean   : 91.73   Mean   : 95.94   Mean   : 92.9                
##  3rd Qu.:102.00   3rd Qu.:105.00   3rd Qu.:102.0                
##  Max.   :135.00   Max.   :205.00   Max.   :131.0                
##  NA's   :6        NA's   :4        NA's   :2                    
##   mot_cruzaizq    cor_izq     cor_cruzaizq    leng_izq   leng_cruzaizq
##  no pasa:188   no pasa: 61   no pasa:212   no pasa:118   no pasa:257  
##  pasa   :196   pasa   :327   pasa   :176   pasa   :271   pasa   :132  
##  NA's   :  6   NA's   :  2   NA's   :  2   NA's   :  1   NA's   :  1  
##                                                                       
##                                                                       
##                                                                       
##                                                                       
##     soc_izq     soc_cruzaizq      nbi5          nbi4         
##  no pasa: 63   no pasa:130   Min.   :0.0   Min.   :0.000000  
##  pasa   :326   pasa   :259   1st Qu.:0.0   1st Qu.:0.000000  
##  NA's   :  1   NA's   :  1   Median :0.0   Median :0.000000  
##                              Mean   :0.1   Mean   :0.005128  
##                              3rd Qu.:0.0   3rd Qu.:0.000000  
##                              Max.   :1.0   Max.   :1.000000  
##                                                              
##       nbi3              nbi2              nbi1           cuantas      
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.00000   Median :0.0000   Median :0.0000  
##  Mean   :0.05641   Mean   :0.02821   Mean   :0.2795   Mean   :0.4692  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   Max.   :4.0000  
##                                                                       
##           tipo          peso     
##  CAIF       :110   Min.   :1135  
##  C_diurno   : 59   1st Qu.:2940  
##  jar_privado:123   Median :3292  
##  jar_publico: 98   Mean   :3269  
##                    3rd Qu.:3678  
##                    Max.   :4380  
##                    NA's   :92
summary(todo$peso)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    1135    2940    3292    3269    3678    4380      92
plot(density(todo$peso,na.rm=TRUE),cex.main=0.9,main="Distribucion del Peso al nacer", xlab="Peso en gramos",ylab="F.R")

summary(todo$tot.ci)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   65.00   84.00   94.00   92.57  101.00  128.00       6
plot(density(todo$tot.ci,na.rm=TRUE),cex.main=0.9,main="Distribucion del Batelle", xlab="Puntaje",ylab="F.R")
abline(v=85,col=2)
abline(v=115,col=3)

todo$sexo.rec<-as.factor(todo$sexo)
levels(todo$sexo.rec)<-c("F","M")
cdplot(todo$sexo.rec~todo$tot.ci,cex.main=0.9,xlab="Puntaje Batelle",ylab="Sexo",main="Distribución condicional del sexo según Batelle")
## Warning: In density.default(x, bw = bw, n = n, ...) :
##  extra argument 'cex.main' will be disregarded
## Warning: In density.default(x[y %in% levels(y)[seq_len(i)]], bw = dx$bw, 
##     n = n, from = min(dx$x), to = max(dx$x), ...) :
##  extra argument 'cex.main' will be disregarded

summary(todo$edmes)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    5.00   26.00   40.00   38.77   51.00   71.00       7
summary(todo$tot.ci)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   65.00   84.00   94.00   92.57  101.00  128.00       6
#coor   va con bat$totad.ci o con coor con bat$ttmotmf.ci
#motor va con bat$totmot.ci
#leng va con bat$totcom.ci
#soc va con bat$totps.ci

cdplot(todo$soc_izq~todo$totps.ci,cex.main=0.9,xlab="Puntaje Batelle Social",ylab="Guia",main="Distribución condicional de la Guia según Batelle Social")
## Warning: In density.default(x, bw = bw, n = n, ...) :
##  extra argument 'cex.main' will be disregarded
## Warning: In density.default(x[y %in% levels(y)[seq_len(i)]], bw = dx$bw, 
##     n = n, from = min(dx$x), to = max(dx$x), ...) :
##  extra argument 'cex.main' will be disregarded

cdplot(todo$soc_cruzaizq~todo$totps.ci,cex.main=0.9,xlab="Puntaje Batelle Social",ylab="Guia",main="Distribución condicional de la Guia (C+I) 
       según Batelle Social")
## Warning: In density.default(x, bw = bw, n = n, ...) :
##  extra argument 'cex.main' will be disregarded

## Warning: In density.default(x[y %in% levels(y)[seq_len(i)]], bw = dx$bw, 
##     n = n, from = min(dx$x), to = max(dx$x), ...) :
##  extra argument 'cex.main' will be disregarded

summary(todo[,120:126])
##       nbi5          nbi4               nbi3              nbi2        
##  Min.   :0.0   Min.   :0.000000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.0   1st Qu.:0.000000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.0   Median :0.000000   Median :0.00000   Median :0.00000  
##  Mean   :0.1   Mean   :0.005128   Mean   :0.05641   Mean   :0.02821  
##  3rd Qu.:0.0   3rd Qu.:0.000000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.0   Max.   :1.000000   Max.   :1.00000   Max.   :1.00000  
##       nbi1           cuantas                tipo    
##  Min.   :0.0000   Min.   :0.0000   CAIF       :110  
##  1st Qu.:0.0000   1st Qu.:0.0000   C_diurno   : 59  
##  Median :0.0000   Median :0.0000   jar_privado:123  
##  Mean   :0.2795   Mean   :0.4692   jar_publico: 98  
##  3rd Qu.:1.0000   3rd Qu.:1.0000                    
##  Max.   :1.0000   Max.   :4.0000
table(todo$nbi1)
## 
##   0   1 
## 281 109
table(todo$nbi2)
## 
##   0   1 
## 379  11
table(todo$nbi3)
## 
##   0   1 
## 368  22
table(todo$nbi4)
## 
##   0   1 
## 388   2
table(todo$nbi5)
## 
##   0   1 
## 351  39
table(todo$cuantas)
## 
##   0   1   2   3   4 
## 257  94  29   9   1
#library(car)
#todo$nbi.rec<-as.factor(recode(todo$cuantas,"0=0;1:4=1"))
#levels(todo$nbi.rec)<-c("Sin NBI","Con NBI")
cdplot(todo$nbi.rec~todo$tot.ci,cex.main=0.9,xlab="Puntaje Batelle",ylab="Sexo",main="Distribución condicional de NBI según Batelle")
## Warning: In density.default(x, bw = bw, n = n, ...) :
##  extra argument 'cex.main' will be disregarded
## Warning: In density.default(x[y %in% levels(y)[seq_len(i)]], bw = dx$bw, 
##     n = n, from = min(dx$x), to = max(dx$x), ...) :
##  extra argument 'cex.main' will be disregarded

boxplot(todo$tot.ci~todo$tipo,cex.main=0.8,main="Distribución condicional de Batelle segun tipo de Centro",varwdith=TRUE,horizontal=TRUE)
abline(v=85,col=2)

addmargins(table(todo$tipo,todo$nbi.rec))
##              
##               Sin NBI Con NBI Sum
##   CAIF             67      43 110
##   C_diurno         29      30  59
##   jar_privado     106      17 123
##   jar_publico      55      43  98
##   Sum             257     133 390
prop.table(table(todo$tipo,todo$nbi.rec),1)
##              
##                 Sin NBI   Con NBI
##   CAIF        0.6090909 0.3909091
##   C_diurno    0.4915254 0.5084746
##   jar_privado 0.8617886 0.1382114
##   jar_publico 0.5612245 0.4387755
library(epiR)
## Loading required package: survival
## Package epiR 0.9-79 is loaded
## Type help(epi.about) for summary information
## 
#coor   va con bat$totad.ci o con coor con bat$ttmotmf.ci
#motor va con bat$totmot.ci
#leng va con bat$totcom.ci
#soc va con bat$totps.ci

tabla.soc1<-table(todo$soc_izq,todo$totps.ci.rec)
tabla.soc2<-table(todo$soc_cruzaizq,todo$totps.ci.rec)
addmargins(tabla.soc1)
##          
##           Bat.No pasa Bat.Pasa Sum
##   no pasa          25       38  63
##   pasa             77      247 324
##   Sum             102      285 387
addmargins(tabla.soc2)
##          
##           Bat.No pasa Bat.Pasa Sum
##   no pasa          48       82 130
##   pasa             54      203 257
##   Sum             102      285 387
rval.soc1<-epi.tests(tabla.soc1,conf.level=0.95)  
rval.soc1
##           Outcome +    Outcome -      Total
## Test +           25           38         63
## Test -           77          247        324
## Total           102          285        387
## 
## Point estimates and 95 % CIs:
## ---------------------------------------------------------
## Apparent prevalence                    0.16 (0.13, 0.20)
## True prevalence                        0.26 (0.22, 0.31)
## Sensitivity                            0.25 (0.17, 0.34)
## Specificity                            0.87 (0.82, 0.90)
## Positive predictive value              0.40 (0.28, 0.53)
## Negative predictive value              0.76 (0.71, 0.81)
## Positive likelihood ratio              1.84 (1.17, 2.89)
## Negative likelihood ratio              0.87 (0.77, 0.98)
## ---------------------------------------------------------
rval.soc2<-epi.tests(tabla.soc1,conf.level=0.95)  
rval.soc2
##           Outcome +    Outcome -      Total
## Test +           25           38         63
## Test -           77          247        324
## Total           102          285        387
## 
## Point estimates and 95 % CIs:
## ---------------------------------------------------------
## Apparent prevalence                    0.16 (0.13, 0.20)
## True prevalence                        0.26 (0.22, 0.31)
## Sensitivity                            0.25 (0.17, 0.34)
## Specificity                            0.87 (0.82, 0.90)
## Positive predictive value              0.40 (0.28, 0.53)
## Negative predictive value              0.76 (0.71, 0.81)
## Positive likelihood ratio              1.84 (1.17, 2.89)
## Negative likelihood ratio              0.87 (0.77, 0.98)
## ---------------------------------------------------------
tabla.mot1<-table(todo$mot_izq,todo$totmot.ci.rec)
tabla.mot2<-table(todo$mot_cruzaizq,todo$totmot.ci.rec)
addmargins(tabla.mot1)
##          
##           Bat.No pasa Bat.Pasa Sum
##   no pasa          30       28  58
##   pasa             75      245 320
##   Sum             105      273 378
addmargins(tabla.mot2)
##          
##           Bat.No pasa Bat.Pasa Sum
##   no pasa          72      112 184
##   pasa             33      161 194
##   Sum             105      273 378
rval.mot1<-epi.tests(tabla.mot1,conf.level=0.95)  
rval.mot1
##           Outcome +    Outcome -      Total
## Test +           30           28         58
## Test -           75          245        320
## Total           105          273        378
## 
## Point estimates and 95 % CIs:
## ---------------------------------------------------------
## Apparent prevalence                    0.15 (0.12, 0.19)
## True prevalence                        0.28 (0.23, 0.33)
## Sensitivity                            0.29 (0.20, 0.38)
## Specificity                            0.90 (0.86, 0.93)
## Positive predictive value              0.52 (0.38, 0.65)
## Negative predictive value              0.77 (0.72, 0.81)
## Positive likelihood ratio              2.79 (1.75, 4.43)
## Negative likelihood ratio              0.80 (0.70, 0.90)
## ---------------------------------------------------------
rval.mot2<-epi.tests(tabla.mot2,conf.level=0.95)  
rval.mot2
##           Outcome +    Outcome -      Total
## Test +           72          112        184
## Test -           33          161        194
## Total           105          273        378
## 
## Point estimates and 95 % CIs:
## ---------------------------------------------------------
## Apparent prevalence                    0.49 (0.44, 0.54)
## True prevalence                        0.28 (0.23, 0.33)
## Sensitivity                            0.69 (0.59, 0.77)
## Specificity                            0.59 (0.53, 0.65)
## Positive predictive value              0.39 (0.32, 0.47)
## Negative predictive value              0.83 (0.77, 0.88)
## Positive likelihood ratio              1.67 (1.38, 2.03)
## Negative likelihood ratio              0.53 (0.40, 0.72)
## ---------------------------------------------------------
tabla.len1<-table(todo$leng_izq,todo$totcom.ci.rec)
tabla.len2<-table(todo$leng_cruzaizq,todo$totcom.ci.rec)
addmargins(tabla.len1)
##          
##           Bat.No pasa Bat.Pasa Sum
##   no pasa          72       45 117
##   pasa             70      196 266
##   Sum             142      241 383
addmargins(tabla.len2)
##          
##           Bat.No pasa Bat.Pasa Sum
##   no pasa         114      140 254
##   pasa             28      101 129
##   Sum             142      241 383
rval.len1<-epi.tests(tabla.len1,conf.level=0.95)  
rval.len1
##           Outcome +    Outcome -      Total
## Test +           72           45        117
## Test -           70          196        266
## Total           142          241        383
## 
## Point estimates and 95 % CIs:
## ---------------------------------------------------------
## Apparent prevalence                    0.31 (0.26, 0.35)
## True prevalence                        0.37 (0.32, 0.42)
## Sensitivity                            0.51 (0.42, 0.59)
## Specificity                            0.81 (0.76, 0.86)
## Positive predictive value              0.62 (0.52, 0.70)
## Negative predictive value              0.74 (0.68, 0.79)
## Positive likelihood ratio              2.72 (1.99, 3.70)
## Negative likelihood ratio              0.61 (0.51, 0.72)
## ---------------------------------------------------------
rval.len2<-epi.tests(tabla.len2,conf.level=0.95)  
rval.len2
##           Outcome +    Outcome -      Total
## Test +          114          140        254
## Test -           28          101        129
## Total           142          241        383
## 
## Point estimates and 95 % CIs:
## ---------------------------------------------------------
## Apparent prevalence                    0.66 (0.61, 0.71)
## True prevalence                        0.37 (0.32, 0.42)
## Sensitivity                            0.80 (0.73, 0.86)
## Specificity                            0.42 (0.36, 0.48)
## Positive predictive value              0.45 (0.39, 0.51)
## Negative predictive value              0.78 (0.70, 0.85)
## Positive likelihood ratio              1.38 (1.21, 1.58)
## Negative likelihood ratio              0.47 (0.33, 0.68)
## ---------------------------------------------------------