Reading a Chess Tournament Text File

This is my project for the reading a chess tournament cross table. I used various tools for manipulation of data that mimicked more of the Excel vlookup funtion to change the vales in the matrix of who a player played against vs. their pretournament scores.

require(stringr)
## Loading required package: stringr
require(stringi)
## Loading required package: stringi
library(stringr)
library(qdapTools)
library(stringi)

This section reads in the data and removes unecessary dashes.

#load text file by reading lines
setwd("/Users/cesarespitia/Documents/CUNYMSDA/Data 607/CUNYDATA607/Project 1")
df <- readLines("tournamentinfo.txt")
## Warning in readLines("tournamentinfo.txt"): incomplete final line found on
## 'tournamentinfo.txt'
df<-df[-(1:4)]
#remove dashes
lines<-c("-----------------------------------------------------------------------------------------")
df<-setdiff(df,lines)

#remove spaces with 2 or more
df<-str_replace_all(df," {2}","")

I then noticed that different data lived in the even and odd rows of the remaining data. Even rows had the ID of the player, name, points and who they played against.

#collapse table by odd and even rows
table<-cbind(rep(1:2,64),df)
table1<-table[(table[,1]=="1"),2]
table2<-table[(table[,1]=="2"),2]

From here, specific information was extraced using the newly learned stringr/stringi tools from the HW. When pulling the player ID i looked for 1 or 2 digits and then looked only for complete cases and then trimmed any extra spaces or ’|’s in the lists.

For the names, i looked for all capital characters of varying lengths that had word edges.

#pull PlayerID
ID<-str_extract(table1,"\\d{1,2} \\| ")
ID<-ID[complete.cases(ID)]
ID<-str_extract(ID,"\\d{1,2}")

#pull names
names<- str_extract_all(table1,"\\b[A-Z]{2,40}\\b")
names<- sapply(names, paste0, collapse=" ")

#pull state
ST<-str_extract(table2,"\\w{2} \\| ")
ST<-ST[complete.cases(ST)]
ST<-str_extract(ST,"\\w{2}")

#pull points
pts<- data.frame(str_extract(table1,"\\d{1}.\\d{1}"))

#prerating
prerating<-str_extract_all(table2,"\\d{3,4}")
prerating<-matrix(unlist(prerating),ncol=4,byrow=TRUE)
preratings<-prerating[,3]

#Values per match extraction
vals<-str_extract_all(table1,"\\d{1,2}\\|")
vals<-str_extract_all(table1,"\\d{1,2}")
#lapply(vals, as.character)

At this point, I had most of my data assembled except for the math. I had some trouble trying to figure this out, but ended up using various items from qdaptools and stringi and a lot of data frame, list to matrix manipulation.

#convertdata to numeric from list/character

temp <- stri_list2matrix(vals, byrow = TRUE)
final <- `dim<-`(as.numeric(temp), dim(temp))
final <- final[,(4:10)]
 
#convert preratings to factor to insert into data
preratings<-as.factor(preratings)
matchvals<-data.frame(ID,preratings,
                 stringsAsFactors = TRUE)
matchvals[,1]<-as.numeric(as.character(matchvals[[1]]))
matchvals[,2]<-as.numeric(as.character(matchvals[[2]]))

#replace player with pre tournament scores - prerating
k <- 1
scores<-matrix(nrow=64,ncol=7)
while(k<8) {
  scores[,k]<-final[,k]%l%matchvals
  k<-k+1
}

Scores were manipulated once they were in a numeric matrix that I could manipulate. I first converted scores to 1s and NAs as zeros so I could calculate the number of games played.

#manipulate scores to determine number of games played by converting scores to 1 and NA to 0s.
played<-scores
played[!is.na(played)]<-1
played[is.na(played)]<-0
played<-rowSums(played)

#manipulate matrix to remove NAs
scores[is.na(scores)]<-0

#sumrows
scores<-rowSums(scores)

#average pre chess rating
PreChess<-scores%/%played

Once all the data manipulation was done, the data was assembled and shown as a table using the formattable library. Data was not sorted and is shown as it was read in from the text file.

#combined Data

totaldata<-cbind(ID,names,ST,pts,preratings,PreChess)
colnames(totaldata)<-c("ID","Player's Name","Player's State","Total Number of Points","Player's Pre-Rating","Average Pre-Chess Rating")


library(formattable)
formattable(totaldata)
ID Player’s Name Player’s State Total Number of Points Player’s Pre-Rating Average Pre-Chess Rating
1 GARY HUA ON 6.0 1794 1605
2 DAKSHESH DARURI MI 6.0 1553 1469
3 ADITYA BAJAJ MI 6.0 1384 1563
4 PATRICK SCHILLING MI 5.5 1716 1573
5 HANSHI ZUO MI 5.5 1655 1500
6 HANSEN SONG OH 5.0 1686 1518
7 GARY DEE SWATHELL MI 5.0 1649 1372
8 EZEKIEL HOUGHTON MI 5.0 1641 1468
9 STEFANO LEE ON 5.0 1411 1523
10 ANVIT RAO MI 5.0 1365 1554
11 CAMERON WILLIAM MC LEMAN MI 4.5 1712 1467
12 KENNETH TACK MI 4.5 1663 1506
13 TORRANCE HENRY JR MI 4.5 1666 1497
14 BRADLEY SHAW MI 4.5 1610 1515
15 ZACHARY JAMES HOUGHTON MI 4.5 1220 1483
16 MIKE NIKITIN MI 4.0 1604 1385
17 RONALD GRZEGORCZYK MI 4.0 1629 1498
18 DAVID SUNDEEN MI 4.0 1600 1480
19 DIPANKAR ROY MI 4.0 1564 1426
20 JASON ZHENG MI 4.0 1595 1410
21 DINH DANG BUI ON 4.0 1563 1470
22 EUGENE MCCLURE MI 4.0 1555 1300
23 ALAN BUI ON 4.0 1363 1213
24 MICHAEL ALDRICH MI 4.0 1229 1357
25 LOREN SCHWIEBERT MI 3.5 1745 1363
26 MAX ZHU ON 3.5 1579 1506
27 GAURAV GIDWANI MI 3.5 1552 1221
28 SOFIA ADINA STANESCU BELLU MI 3.5 1507 1522
29 CHIEDOZIE OKORIE MI 3.5 1602 1313
30 GEORGE AVERY JONES ON 3.5 1522 1144
31 RISHI SHETTY MI 3.5 1494 1259
32 JOSHUA PHILIP MATHEWS ON 3.5 1441 1378
33 JADE GE MI 3.5 1449 1276
34 MICHAEL JEFFERY THOMAS MI 3.5 1399 1375
35 JOSHUA DAVID LEE MI 3.5 1438 1149
36 SIDDHARTH JHA MI 3.5 1355 1388
37 AMIYATOSH PWNANANDAM MI 3.5 980 1384
38 BRIAN LIU MI 3.0 1423 1539
39 JOEL HENDON MI 3.0 1436 1429
40 FOREST ZHANG MI 3.0 1348 1390
41 KYLE WILLIAM MURPHY MI 3.0 1403 1248
42 JARED GE MI 3.0 1332 1149
43 ROBERT GLEN VASEY MI 3.0 1283 1106
44 JUSTIN SCHILLING MI 3.0 1199 1327
45 DEREK YAN MI 3.0 1242 1152
46 JACOB ALEXANDER LAVALLEY MI 3.0 377 1357
47 ERIC WRIGHT MI 2.5 1362 1392
48 DANIEL KHAIN MI 2.5 1382 1355
49 MICHAEL MARTIN MI 2.5 1291 1285
50 SHIVAM JHA MI 2.5 1056 1296
51 TEJAS AYYAGARI MI 2.5 1011 1356
52 ETHAN GUO MI 2.5 935 1494
53 JOSE YBARRA MI 2.0 1393 1345
54 LARRY HODGE MI 2.0 1270 1206
55 ALEX KONG MI 2.0 1186 1406
56 MARISA RICCI MI 2.0 1153 1414
57 MICHAEL LU MI 2.0 1092 1363
58 VIRAJ MOHILE MI 2.0 917 1391
59 SEAN MC CORMICK MI 2.0 853 1319
60 JULIA SHEN MI 1.5 967 1330
61 JEZZEL FARKAS ON 1.5 955 1327
62 ASHWIN BALAJI MI 1.0 1530 1186
63 THOMAS JOSEPH HOSMER MI 1.0 1175 1350
64 BEN LI MI 1.0 1163 1263