Part a)
set.seed(42)
dice1<-sample(1:6,500,replace=TRUE)
set.seed(43)
dice2<-sample(1:6,500,replace=TRUE)
dsum<-dice1+dice2
summary(dsum)
Part b)
set.seed(42)
p1<-c(1,2,3,4,5,6)
p2<-c(1,1,1,3,1,1)
dice1<-sample(1:6,500,replace=TRUE,prob=p1)
set.seed(43)
dice2<-sample(1:6,500,replace=TRUE,prob=p2)
dsum<-dice1+dice2
summary(dsum)
Part c)
set.seed(42)
dice1<-sample(1:6,10000,replace=TRUE)
set.seed(43)
dice2<-sample(1:6,10000,replace=TRUE)
dsum<-dice1+dice2
dsum<-data.frame(dsum)
summary(dsum)
## dsum
## Min. : 2.000
## 1st Qu.: 5.000
## Median : 7.000
## Mean : 6.985
## 3rd Qu.: 9.000
## Max. :12.000
library("plyr")
mcfreq<-data.frame(count(dsum))
trueprob<-c(1,2,3,4,5,6,5,4,3,2,1)/36
mcprob<-data.frame("simprob"=mcfreq$freq/10000)
###compare differences (percent of true values)
abs(trueprob-mcprob)/trueprob*100
## simprob
## 1 9.440
## 2 4.420
## 3 5.360
## 4 1.540
## 5 1.144
## 6 0.440
## 7 0.136
## 8 2.260
## 9 0.200
## 10 2.240
## 11 2.800
zz1z Separately attached,
Item<-c("Oats","Peas","Beans","Barley")
cost<-c(1.05,3.17,1.99,.95)
sell<-c(1.29,3.76,2.23,1.65)
maxD<-c(10,8,14,11)
data<-data.frame(Item,cost,sell,maxD)
trueD_90<-c()
TotalC<-c()
TotalP<-c()
TotalR<-c()
for(i in 1:10000) {
trueD_90<-c(sum(round(runif(90,0,data$maxD[1]),0)),sum(round(runif(90,0,data$maxD[2]),0)),sum(round(runif(90,0,data$maxD[3]),0)),sum(round(runif(90,0,data$maxD[4]),0)))
TotalC[i]<-sum(data$cost*trueD_90)
TotalR[i]<-sum(data$sell*trueD_90)
TotalP[i]<-sum(TotalR[i]-TotalC[i])
}
##Histogram of Costs
summary(TotalC)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2915 3262 3337 3336 3410 3713
hist(TotalC)
#Normal
## Revenue
summary(TotalR)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3653 4064 4154 4154 4246 4637
hist(TotalR)
## Profit
summary(TotalP)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 707.9 799.5 817.9 817.9 836.6 924.1
hist(TotalP)