The goal of this project is just to display some statistics about data mining for the data science capstone project, and some insights to create a prediction algorithm app on Shiny.
For this project we use some logs of different sources (in different languages), to train and create a prediction algorithm (see the appendix II for more details about the functions used for download the datasets).
To get some statistics we used the system comand “wc” to count the lines and words in each file (see appendix II for more details).
source("main.R")
files <- dir(".", pattern=".*(blogs|news|twitter).*txt", recursive = T)
infos <- file.info(files)
infos$name <- files
infos$lines <- sapply(files, CAP.fileLinesCount)
infos$words <- sapply(files, CAP.fileWordsCount)
# not calculated the chars count, because is useless in this context
# infos$chars_count <- lapply(files, CAP.fileCharsCount)
kable(select(infos, name, size, lines, words) %>% mutate(size=paste(trunc(size / 1024^2), " MB")))
| name | size | lines | words |
|---|---|---|---|
| data/final/de_DE/de_DE.blogs.txt | 81 MB | 371440 | 12652985 |
| data/final/de_DE/de_DE.news.txt | 91 MB | 244743 | 13216346 |
| data/final/de_DE/de_DE.twitter.txt | 72 MB | 947774 | 11803486 |
| data/final/en_US/en_US.blogs.txt | 200 MB | 899288 | 37334117 |
| data/final/en_US/en_US.news.txt | 196 MB | 1010242 | 34365936 |
| data/final/en_US/en_US.twitter.txt | 159 MB | 2360148 | 30373559 |
| data/final/fi_FI/fi_FI.blogs.txt | 103 MB | 439785 | 12731004 |
| data/final/fi_FI/fi_FI.news.txt | 89 MB | 485758 | 10444685 |
| data/final/fi_FI/fi_FI.twitter.txt | 24 MB | 285214 | 3152757 |
| data/final/ru_RU/ru_RU.blogs.txt | 111 MB | 337100 | 9405377 |
| data/final/ru_RU/ru_RU.news.txt | 113 MB | 196360 | 9115829 |
| data/final/ru_RU/ru_RU.twitter.txt | 100 MB | 881414 | 9223838 |
Below we can see the frequency of n-grams found in the firs 10K lines of the each datasets for the english language with full text. For the 1-gram the stopwords were removed.
CAP.plotFrequency("./data/final/en_US/en_US.blogs.txt")
CAP.plotFrequency("./data/final/en_US/en_US.news.txt")
CAP.plotFrequency("./data/final/en_US/en_US.twitter.txt")
Wordcloud of terms from a sampled and merged datasets in english:
blogs <- readLines("./data/final/en_US/en_US.blogs.txt", skipNul = T, n=10000)
news <- readLines("./data/final/en_US/en_US.news.txt", skipNul = T, n=10000)
twitter <- readLines("./data/final/en_US/en_US.twitter.txt", skipNul = T, n=10000)
merged <- c(blogs, news, twitter)
CAP.wordcloud(merged, max.words=300)
After the exploratory analysis, I think it is ready to start building the predictive model(s) and eventually the data product. Here is my further steps:
The goal of this project is just to display that you’ve gotten used to working with the data and that you are on track to create your prediction algorithm. Please submit a report on R Pubs (http://rpubs.com/) that explains your exploratory analysis and your goals for the eventual app and algorithm. This document should be concise and explain only the major features of the data you have identified and briefly summarize your plans for creating the prediction algorithm and Shiny app in a way that would be understandable to a non-data scientist manager. You should make use of tables and plots to illustrate important summaries of the data set. The motivation for this project is to: 1. Demonstrate that you’ve downloaded the data and have successfully loaded it in.2. Create a basic report of summary statistics about the data sets.3. Report any interesting findings that you amassed so far.4. Get feedback on your plans for creating a prediction algorithm and Shiny app.
Review criteria
In this section you can see the auxiliary functions existent in the main.R file.
CAP.download
## function (config = CAP.config)
## {
## file = paste0(Config$data_path, "/", config$file_zipped)
## if (!file.exists(file)) {
## if (!dir.exists(config$data_path)) {
## dir.create(config$data_path)
## }
## download.file(config$url, file)
## }
## if (!dir.exists(paste0(config$data_path, "/final"))) {
## unzip(file, exdir = config$data_path)
## }
## paste0("Dataset downloaded and unzipped in folder: ", Config$data_path,
## "/final")
## }
CAP.ngramFreq
## function (text, n = 1)
## {
## ngrams <- tokenize(char_tolower(text), removePunct = TRUE,
## removeNumbers = TRUE, removeTwitter = TRUE, removeSymbols = TRUE,
## removeURL = TRUE, removeSeparators = TRUE, ngrams = n)
## my_dfm <- dfm(ngrams, remove = stopwords("english"))
## freq <- colSums(my_dfm)
## gram <- data.frame(ngram = names(freq), freq = freq)
## gram %>% arrange(desc(freq))
## }
CAP.fileLinesCount
## function (file)
## {
## system(paste0("wc -l < ", file), intern = TRUE)
## }
CAP.fileWordsCount
## function (file)
## {
## system(paste0("wc -w < ", file), intern = TRUE)
## }
CAP.fileCharsCount
## function (file)
## {
## system(paste0("wc -m < ", file), intern = TRUE)
## }
CAP.plotFrequency
## function (filename, lines = 10000, top = 20)
## {
## sampled_file <- readLines(filename, skipNul = T, n = lines)
## ngram.1 <- CAP.ngramFreq(sampled_file, 1)
## t1 <- ggplot(ngram.1[1:top, ], aes(x = reorder(ngram, freq),
## y = freq)) + geom_bar(stat = "identity", col = "gray",
## fill = "green", width = 0.5) + coord_flip() + ggtitle("1-gram") +
## xlab("n-gram") + ylab("") + geom_text(aes(label = freq),
## hjust = -0.1, size = 3)
## ngram.2 <- CAP.ngramFreq(sampled_file, 2)
## t2 <- ggplot(ngram.2[1:top, ], aes(x = reorder(ngram, freq),
## y = freq)) + geom_bar(stat = "identity", col = "gray",
## fill = "blue", width = 0.5) + coord_flip() + ggtitle("2-gram") +
## xlab("") + ylab("frequency") + geom_text(aes(label = freq),
## hjust = -0.1, size = 3)
## ngram.3 <- CAP.ngramFreq(sampled_file, 3)
## t3 <- ggplot(ngram.3[1:top, ], aes(x = reorder(ngram, freq),
## y = freq)) + geom_bar(stat = "identity", col = "gray",
## fill = "purple", width = 0.5) + coord_flip() + ggtitle("3-gram") +
## xlab("") + ylab("") + geom_text(aes(label = freq), hjust = -0.1,
## size = 3)
## multiplot(t1, t2, t3, cols = 3)
## }
CAP.wordcloud
## function (text, max.words = 200)
## {
## corpus <- Corpus(VectorSource(text))
## corpus <- tm_map(corpus, tolower)
## corpus <- tm_map(corpus, removePunctuation)
## corpus <- tm_map(corpus, removeNumbers)
## corpus <- tm_map(corpus, stripWhitespace)
## corpus <- tm_map(corpus, removeWords, stopwords("english"))
## corpus <- tm_map(corpus, stemDocument, language = "english")
## corpus <- tm_map(corpus, PlainTextDocument)
## wordcloud(corpus, max.words = max.words, random.order = FALSE,
## rot.per = 0.1, scale = c(2.5, 0.3), use.r.layout = FALSE,
## colors = brewer.pal(8, "Dark2"))
## }