Sans prendre en considération le changement d'analyseur
Régression linéaire simple BC AE22 vs NOx
mod.her <- lm(formula = Herstal_NOX ~ Herstal_BC , data = tmp2)
summary(mod.her)
##
## Call:
## lm(formula = Herstal_NOX ~ Herstal_BC, data = tmp2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -146.739 -10.673 -1.264 8.094 272.954
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7285 0.9739 0.748 0.455
## Herstal_BC 45.4475 0.4434 102.507 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28.33 on 1669 degrees of freedom
## (273 observations deleted due to missingness)
## Multiple R-squared: 0.8629, Adjusted R-squared: 0.8629
## F-statistic: 1.051e+04 on 1 and 1669 DF, p-value: < 2.2e-16
Régression linéaire simple BC AE22 vs NOx forcée à l'origine
mod.her <- lm(formula = Herstal_NOX ~ Herstal_BC - 1 , data = tmp2)
summary(mod.her)
##
## Call:
## lm(formula = Herstal_NOX ~ Herstal_BC - 1, data = tmp2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -148.697 -10.162 -0.717 8.586 272.138
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## Herstal_BC 45.6806 0.3154 144.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28.32 on 1670 degrees of freedom
## (273 observations deleted due to missingness)
## Multiple R-squared: 0.9262, Adjusted R-squared: 0.9262
## F-statistic: 2.097e+04 on 1 and 1670 DF, p-value: < 2.2e-16
Régression linéaire simple BC AE33 vs NOx
mod.her <- lm(formula = Herstal_NOX ~ bc.ae33 , data = tmp2)
summary(mod.her)
##
## Call:
## lm(formula = Herstal_NOX ~ bc.ae33, data = tmp2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -239.207 -11.097 -1.886 8.479 283.317
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9994 0.9096 3.298 0.000994 ***
## bc.ae33 28.9787 0.2682 108.057 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28.3 on 1866 degrees of freedom
## (76 observations deleted due to missingness)
## Multiple R-squared: 0.8622, Adjusted R-squared: 0.8621
## F-statistic: 1.168e+04 on 1 and 1866 DF, p-value: < 2.2e-16
Régression linéaire simple BC AE33 vs NOx forcée à l'origine
mod.her <- lm(formula = Herstal_NOX ~ bc.ae33 - 1 , data = tmp2)
summary(mod.her)
##
## Call:
## lm(formula = Herstal_NOX ~ bc.ae33 - 1, data = tmp2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -249.216 -9.265 0.330 10.204 280.203
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## bc.ae33 29.5924 0.1936 152.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28.38 on 1867 degrees of freedom
## (76 observations deleted due to missingness)
## Multiple R-squared: 0.926, Adjusted R-squared: 0.926
## F-statistic: 2.336e+04 on 1 and 1867 DF, p-value: < 2.2e-16
En tenant compte du changement de l'analyseur
Période 2.1 du 15/10/2016 au 22/12/2016
Régression linéaire simple BC AE22 vs NOx
mod.her <- lm(formula = Herstal_NOX ~ Herstal_BC , data = tmp2.titulaire)
summary(mod.her)
##
## Call:
## lm(formula = Herstal_NOX ~ Herstal_BC, data = tmp2.titulaire)
##
## Residuals:
## Min 1Q Median 3Q Max
## -149.793 -10.811 -0.536 8.328 258.159
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.3607 1.1092 -1.227 0.22
## Herstal_BC 47.9942 0.5302 90.528 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28.49 on 1366 degrees of freedom
## (264 observations deleted due to missingness)
## Multiple R-squared: 0.8571, Adjusted R-squared: 0.857
## F-statistic: 8195 on 1 and 1366 DF, p-value: < 2.2e-16
Régression linéaire simple BC AE22 vs NOx forcée à l'origine
mod.her <- lm(formula = Herstal_NOX ~ Herstal_BC - 1 , data = tmp2.titulaire)
summary(mod.her)
##
## Call:
## lm(formula = Herstal_NOX ~ Herstal_BC - 1, data = tmp2.titulaire)
##
## Residuals:
## Min 1Q Median 3Q Max
## -147.457 -11.599 -1.427 7.529 259.902
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## Herstal_BC 47.5262 0.3682 129.1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28.49 on 1367 degrees of freedom
## (264 observations deleted due to missingness)
## Multiple R-squared: 0.9242, Adjusted R-squared: 0.9241
## F-statistic: 1.666e+04 on 1 and 1367 DF, p-value: < 2.2e-16
Régression linéaire simple BC AE33 vs NOx
mod.her <- lm(formula = Herstal_NOX ~ bc.ae33 , data = tmp2.titulaire)
summary(mod.her)
##
## Call:
## lm(formula = Herstal_NOX ~ bc.ae33, data = tmp2.titulaire)
##
## Residuals:
## Min 1Q Median 3Q Max
## -143.099 -10.965 -1.288 8.406 270.453
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8762 1.0156 0.863 0.388
## bc.ae33 30.4831 0.3140 97.068 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28.37 on 1577 degrees of freedom
## (53 observations deleted due to missingness)
## Multiple R-squared: 0.8566, Adjusted R-squared: 0.8565
## F-statistic: 9422 on 1 and 1577 DF, p-value: < 2.2e-16
Régression linéaire simple BC AE33 vs NOx forcée à l'origine
mod.her <- lm(formula = Herstal_NOX ~ bc.ae33 - 1 , data = tmp2.titulaire)
summary(mod.her)
##
## Call:
## lm(formula = Herstal_NOX ~ bc.ae33 - 1, data = tmp2.titulaire)
##
## Residuals:
## Min 1Q Median 3Q Max
## -144.831 -10.475 -0.516 8.936 269.410
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## bc.ae33 30.6758 0.2208 139 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28.37 on 1578 degrees of freedom
## (53 observations deleted due to missingness)
## Multiple R-squared: 0.9245, Adjusted R-squared: 0.9244
## F-statistic: 1.931e+04 on 1 and 1578 DF, p-value: < 2.2e-16
Période 2.2 du 22/12/2016 au 03/01/2017
Régression linéaire simple BC AE22 vs NOx
mod.her <- lm(formula = Herstal_NOX ~ Herstal_BC , data = tmp2.rempl)
summary(mod.her)
##
## Call:
## lm(formula = Herstal_NOX ~ Herstal_BC, data = tmp2.rempl)
##
## Residuals:
## Min 1Q Median 3Q Max
## -82.067 -7.686 -2.262 6.897 131.022
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.7738 1.6947 1.637 0.103
## Herstal_BC 39.6611 0.6475 61.248 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.28 on 301 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.9257, Adjusted R-squared: 0.9255
## F-statistic: 3751 on 1 and 301 DF, p-value: < 2.2e-16
Régression linéaire simple BC AE22 vs NOx forcée à l'origine
mod.her <- lm(formula = Herstal_NOX ~ Herstal_BC - 1 , data = tmp2.rempl)
summary(mod.her)
##
## Call:
## lm(formula = Herstal_NOX ~ Herstal_BC - 1, data = tmp2.rempl)
##
## Residuals:
## Min 1Q Median 3Q Max
## -87.300 -6.588 -0.127 8.294 128.066
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## Herstal_BC 40.3556 0.4905 82.27 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.35 on 302 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.9573, Adjusted R-squared: 0.9571
## F-statistic: 6768 on 1 and 302 DF, p-value: < 2.2e-16
Régression linéaire simple BC AE33 vs NOx
mod.her <- lm(formula = Herstal_NOX ~ bc.ae33 , data = tmp2.rempl)
summary(mod.her)
##
## Call:
## lm(formula = Herstal_NOX ~ bc.ae33, data = tmp2.rempl)
##
## Residuals:
## Min 1Q Median 3Q Max
## -159.241 -10.929 -2.836 8.044 90.064
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.0655 1.7086 3.55 0.00045 ***
## bc.ae33 25.0612 0.4119 60.84 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.36 on 287 degrees of freedom
## (23 observations deleted due to missingness)
## Multiple R-squared: 0.928, Adjusted R-squared: 0.9278
## F-statistic: 3702 on 1 and 287 DF, p-value: < 2.2e-16
Régression linéaire simple BC AE33 vs NOx forcée à l'origine
mod.her <- lm(formula = Herstal_NOX ~ bc.ae33 - 1 , data = tmp2.rempl)
summary(mod.her)
##
## Call:
## lm(formula = Herstal_NOX ~ bc.ae33 - 1, data = tmp2.rempl)
##
## Residuals:
## Min 1Q Median 3Q Max
## -172.955 -6.431 1.861 11.810 90.474
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## bc.ae33 25.9944 0.3234 80.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.81 on 288 degrees of freedom
## (23 observations deleted due to missingness)
## Multiple R-squared: 0.9573, Adjusted R-squared: 0.9572
## F-statistic: 6459 on 1 and 288 DF, p-value: < 2.2e-16