Trapping vs Spotlighting with Stats

spot_g <- group_by(spot, site)
spot_s <- summarise(spot_g, total_fish = sum(value), species = length(unique(spp)))
site_vec <- c("Confluence", "El Dorado", "Orbells", "The Rookery")
indx <- spot_s$site %in% site_vec
spot_s$region <- ifelse(indx, "Fresh", "Estuary")
spot_aov <- spot_s

spot_g <- group_by(spot_s, region)
spot_s <- summarise(spot_g, mean_fish = mean(total_fish), 
                            sd = sd(total_fish), 
                            n = length(total_fish), 
                            se = se(total_fish))

## Trapping data
minnow$method <- "Minnow"
hinaki$method <- "Hinaki"
all_td <- bind_rows(minnow, hinaki) # td == Trapping data

trap_g <- group_by(all_td, site)
trap_s <- summarise(trap_g, total_fish = sum(value))
site_vec <- c("Confluence", "El Dorado", "Orbells", "Rookery")
indx <- trap_s$site %in% site_vec
trap_s$region <- ifelse(indx, "Fresh", "Estuary")
trap_aov <- trap_s

# Here we overwrite the objects from above.
# If you are going to do any stats on this, you might like to retain it.  
trap_g <- group_by(trap_s, region)
trap_s <- summarise(trap_g, mean_fish = mean(total_fish), 
                    sd = sd(total_fish), 
                    n = length(total_fish), 
                    se = se(total_fish))


# Plotting Data
trap_s$method <- "Trapping"
spot_s$method <- "Spotlighting"
pdat <- bind_rows(spot_s, trap_s)
pdat
## # A tibble: 4 × 6
##    region mean_fish         sd     n        se       method
##     <chr>     <dbl>      <dbl> <int>     <dbl>        <chr>
## 1 Estuary     31.75  22.020823     4 11.010412 Spotlighting
## 2   Fresh    130.75 105.976019     4 52.988010 Spotlighting
## 3 Estuary      4.00   5.228129     4  2.614065     Trapping
## 4   Fresh      3.50   2.516611     4  1.258306     Trapping
# Error bar = Standard error

p1 <- ggplot(data = pdat, mapping = aes(x = region, y = mean_fish, fill = method, 
                                        group = method))
p1 <- p1 + geom_bar(stat = "identity", position = position_dodge(0.9))
p1 <- p1 + geom_errorbar(mapping = aes(ymin = mean_fish-se, ymax = mean_fish+se), 
                         position = position_dodge(0.9), width = 0.2)
p1 <- p1 + theme_few() + scale_fill_brewer(palette = "Dark2", name = "Method")
p1 <- p1 + xlab("Region") + ylab("Mean Number of Fish")
#p1 <- p1 + ggtitle("Average number of fish sampled with each method")

p1

ggsave("./figures/trapping_vs_spot.png", width = 21, height = 29.7/3, units = "cm")

# 2-way ANOVA
trap_aov$method <- "Trapping"
spot_aov$method <- "Spotlighting"
aov_dat <- bind_rows(trap_aov, spot_aov)
# The underlying model:
m1 <- lm(data = aov_dat, total_fish~region*method)
summary(m1);
## 
## Call:
## lm(formula = total_fish ~ region * method, data = aov_dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -113.750   -4.000    0.250    5.688  125.250 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                   31.75      27.10   1.172   0.2641  
## regionFresh                   99.00      38.32   2.583   0.0240 *
## methodTrapping               -27.75      38.32  -0.724   0.4829  
## regionFresh:methodTrapping   -99.50      54.20  -1.836   0.0913 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 54.2 on 12 degrees of freedom
## Multiple R-squared:  0.5531, Adjusted R-squared:  0.4414 
## F-statistic: 4.951 on 3 and 12 DF,  p-value: 0.01833
anova(m1);
## Analysis of Variance Table
## 
## Response: total_fish
##               Df Sum Sq Mean Sq F value  Pr(>F)  
## region         1   9702  9702.2  3.3030 0.09419 .
## method         1  24025 24025.0  8.1791 0.01436 *
## region:method  1   9900  9900.2  3.3704 0.09126 .
## Residuals     12  35248  2937.4                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sink(file = "./output/trapping_vs_spot_2way.txt")
print(summary(m1))
## 
## Call:
## lm(formula = total_fish ~ region * method, data = aov_dat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -113.750   -4.000    0.250    5.688  125.250 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                   31.75      27.10   1.172   0.2641  
## regionFresh                   99.00      38.32   2.583   0.0240 *
## methodTrapping               -27.75      38.32  -0.724   0.4829  
## regionFresh:methodTrapping   -99.50      54.20  -1.836   0.0913 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 54.2 on 12 degrees of freedom
## Multiple R-squared:  0.5531, Adjusted R-squared:  0.4414 
## F-statistic: 4.951 on 3 and 12 DF,  p-value: 0.01833
cat("\n\n")
print(anova(m1))
## Analysis of Variance Table
## 
## Response: total_fish
##               Df Sum Sq Mean Sq F value  Pr(>F)  
## region         1   9702  9702.2  3.3030 0.09419 .
## method         1  24025 24025.0  8.1791 0.01436 *
## region:method  1   9900  9900.2  3.3704 0.09126 .
## Residuals     12  35248  2937.4                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sink()

Diversity vs Site

non_zero_sum <- function(x){
  sum(as.logical(x))
}

div_g <- group_by(spot, site, spp)
div_spot <- summarise(div_g, fish_sum = sum(value)) #, species = unique(spp)
spot_tot <- reshape2::dcast(div_spot, site~spp, value.var = 'fish_sum', fill = 0)
spot_tot
##           site Black Flounder Brown Trout Common Bully Common Smelt
## 1   Confluence              2          10          155            0
## 2    El Dorado              0          14            0            0
## 3      Orbells              0           1           51            1
## 4  Rail Bridge              0           0            0            0
## 5  River Mouth              0           0            0            0
## 6   State HW 1              1           0            0            0
## 7  The Rookery              1           2           40            0
## 8 Waka Landing              0           0            0            0
##   Giant Bully Inanga Longfin Eel Mullet Shortfin Eel Triplefin
## 1           0     84           3      0            1         0
## 2           0      0           2      0            0         0
## 3           1    121           0      0            0         0
## 4           0     27           0      0            0        10
## 5           0      0           0      0            0         2
## 6           0     30           0      6            0        18
## 7           0     31           0      0            0         0
## 8           0     23           0      0            0        10
##   Unidentified Eel
## 1                1
## 2                1
## 3                0
## 4                0
## 5                0
## 6                0
## 7                1
## 8                0
spot_tot$n_unique <- apply(spot_tot[,-1], MARGIN = 1, FUN = non_zero_sum)

div_g <- group_by(minnow, site, spp)
div_minnow <- summarise(div_g, fish_sum = sum(value)) #, species = unique(spp)
minnow_tot <- reshape2::dcast(div_minnow, site~spp, value.var = 'fish_sum', fill = 0)
minnow_tot
##                site Common Bully Inanga Triplefin
## 1        Confluence            4      3         0
## 2         El Dorado            0      0         0
## 3           Orbells            0      2         0
## 4       Rail Bridge            0      0         0
## 5       River Mouth            0      0         0
## 6           Rookery            0      1         0
## 7   State Highway 1            0      1        10
## 8 Waka Landing Site            0      0         5
minnow_tot$n_unique <- apply(minnow_tot[,-1], MARGIN = 1, FUN = non_zero_sum)

div_g <- group_by(hinaki, site, spp)
div_hinaki <- summarise(div_g, fish_sum = sum(value)) #, species = unique(spp)
hinaki_tot <- reshape2::dcast(div_hinaki, site~spp, value.var = 'fish_sum', fill = 0)
hinaki_tot
##                site Longfin Eel Shortfin Eel
## 1        Confluence           0            0
## 2         El Dorado           3            0
## 3           Orbells           1            0
## 4       Rail Bridge           0            0
## 5       River Mouth           0            0
## 6           Rookery           0            0
## 7   State Highway 1           0            0
## 8 Waka Landing Site           0            0
hinaki_tot$n_unique <- apply(hinaki_tot[,-1], MARGIN = 1, FUN = non_zero_sum)

minnow_tot$method <- "Minnow"
hinaki_tot$method <- "Hinaki"

trap_tot <- hinaki_tot$n_unique + minnow_tot$n_unique
trap_tot
## [1] 2 1 2 0 0 1 2 1
spot_g2 <- group_by(spot_tot, site)
spot_s2 <- summarise(spot_g2)
trap_s2 <- summarise(spot_g2)
spot_s2$n_unique <- spot_tot$n_unique
trap_s2$n_unique <- trap_tot
spot_s2$method <- "Spotlighting"
trap_s2$method <- "Trapping"
spot_s2
## # A tibble: 8 × 3
##           site n_unique       method
##          <chr>    <int>        <chr>
## 1   Confluence        7 Spotlighting
## 2    El Dorado        3 Spotlighting
## 3      Orbells        5 Spotlighting
## 4  Rail Bridge        2 Spotlighting
## 5  River Mouth        1 Spotlighting
## 6   State HW 1        4 Spotlighting
## 7  The Rookery        5 Spotlighting
## 8 Waka Landing        2 Spotlighting
trap_s2
## # A tibble: 8 × 3
##           site n_unique   method
##          <chr>    <int>    <chr>
## 1   Confluence        2 Trapping
## 2    El Dorado        1 Trapping
## 3      Orbells        2 Trapping
## 4  Rail Bridge        0 Trapping
## 5  River Mouth        0 Trapping
## 6   State HW 1        1 Trapping
## 7  The Rookery        2 Trapping
## 8 Waka Landing        1 Trapping
all_data_div <- bind_rows(spot_s2, trap_s2) # td == Trapping data
site_vec <- c("Confluence", "El Dorado", "Orbells", "The Rookery")
indx <- all_data_div$site %in% site_vec
all_data_div$region <- ifelse(indx, "Fresh", "Estuary")
all_data_div
## # A tibble: 16 × 4
##            site n_unique       method  region
##           <chr>    <int>        <chr>   <chr>
## 1    Confluence        7 Spotlighting   Fresh
## 2     El Dorado        3 Spotlighting   Fresh
## 3       Orbells        5 Spotlighting   Fresh
## 4   Rail Bridge        2 Spotlighting Estuary
## 5   River Mouth        1 Spotlighting Estuary
## 6    State HW 1        4 Spotlighting Estuary
## 7   The Rookery        5 Spotlighting   Fresh
## 8  Waka Landing        2 Spotlighting Estuary
## 9    Confluence        2     Trapping   Fresh
## 10    El Dorado        1     Trapping   Fresh
## 11      Orbells        2     Trapping   Fresh
## 12  Rail Bridge        0     Trapping Estuary
## 13  River Mouth        0     Trapping Estuary
## 14   State HW 1        1     Trapping Estuary
## 15  The Rookery        2     Trapping   Fresh
## 16 Waka Landing        1     Trapping Estuary
lord <- c("River Mouth", "Rail Bridge", "Waka Landing", "State HW 1" ,
          "Orbells", "The Rookery", "Confluence", "El Dorado")
all_data_div$siteF <- factor(all_data_div$site, levels = lord)
p2 <- ggplot(data = all_data_div, mapping = aes(x = siteF, y = n_unique, fill = method, 
                                                group = method))
p2 <- p2 + geom_bar(stat = "identity", position = position_dodge(0.9))
p2 <- p2 + theme_few() + scale_fill_brewer(palette = "Dark2", name = "Method")
p2 <- p2 + xlab("ocean  <--      Site      -->  upstream") + ylab("Total No of Species of Fish Found")
#p2 <- p2 + ggtitle("Diversity of species by site")
p2 <- p2 + theme(axis.text.x = element_text(angle = 90, hjust = 0, vjust = 0))

p2

ggsave("./figures/diversity vs site.png", width = 21, height = 29.7/3, units = "cm")

Farming Impact vs Catch

habitat_g = group_by(habitat, site)
habitat_g
## Source: local data frame [824 x 6]
## Groups: site [9]
## 
##              row_name         col_name value       site stock_access     h
##                 <chr>            <chr> <dbl>      <chr>        <int> <chr>
## 1   Measure 1 (Dwn) A Stream Width (m)  12.6 Confluence           10 Width
## 2  Measure 2 (Cntr) A Stream Width (m)  10.8 Confluence           10 Width
## 3    Measure 3 (Up) A Stream Width (m)  15.2 Confluence           10 Width
## 4   Measure 1 (Dwn) B Stream Width (m)  15.2 Confluence           10 Width
## 5  Measure 2 (Cntr) B Stream Width (m)  14.3 Confluence           10 Width
## 6    Measure 3 (Up) B Stream Width (m)   9.3 Confluence           10 Width
## 7   Measure 1 (Dwn) C Stream Width (m)   9.3 Confluence           10 Width
## 8  Measure 2 (Cntr) C Stream Width (m)  11.1 Confluence           10 Width
## 9    Measure 3 (Up) C Stream Width (m)   8.5 Confluence           10 Width
## 10  Measure 1 (Dwn) D Stream Width (m)   8.5 Confluence           10 Width
## # ... with 814 more rows
hab_g <- group_by(habitat, site)
hab_s <- summarise(hab_g, stock_access = mean(stock_access))
site_vec <- c("Confluence", "El Dorado", "Orbells", "The Rookery")
indx <- hab_s$site %in% site_vec
hab_s$region <- ifelse(indx, "Fresh", "Estuary")
hab_s <- hab_s[-9,] # great coding right here eh
# hab_s <- hab_s[-8,]
# hab_s <- hab_s[-6,]
# hab_s <- hab_s[-5,]
# hab_s <- hab_s[-4,]
hab_s
## # A tibble: 8 × 3
##              site stock_access  region
##             <chr>        <dbl>   <chr>
## 1      Confluence           10   Fresh
## 2       El Dorado            3   Fresh
## 3         Orbells            0   Fresh
## 4            Rail           NA Estuary
## 5     River mouth           NA Estuary
## 6 State highway 1           NA Estuary
## 7     The Rookery            0   Fresh
## 8    Waka Landing           NA Estuary
spot_g
## Source: local data frame [8 x 4]
## Groups: region [2]
## 
##           site total_fish species  region
##          <chr>      <int>   <int>   <chr>
## 1   Confluence        256       9   Fresh
## 2    El Dorado         17       9   Fresh
## 3      Orbells        175       9   Fresh
## 4  Rail Bridge         37      11 Estuary
## 5  River Mouth          2      11 Estuary
## 6   State HW 1         55      11 Estuary
## 7  The Rookery         75       9   Fresh
## 8 Waka Landing         33      11 Estuary
trap_g
## Source: local data frame [8 x 3]
## Groups: region [2]
## 
##                site total_fish  region
##               <chr>      <int>   <chr>
## 1        Confluence          7   Fresh
## 2         El Dorado          3   Fresh
## 3           Orbells          3   Fresh
## 4       Rail Bridge          0 Estuary
## 5       River Mouth          0 Estuary
## 6           Rookery          1   Fresh
## 7   State Highway 1         11 Estuary
## 8 Waka Landing Site          5 Estuary
spot_g3 <- group_by(spot_g, site)
spot_s3 <- summarise(spot_g3, total_fish)

trap_g3 <- trap_g

spot_s3
## # A tibble: 8 × 2
##           site total_fish
##          <chr>      <int>
## 1   Confluence        256
## 2    El Dorado         17
## 3      Orbells        175
## 4  Rail Bridge         37
## 5  River Mouth          2
## 6   State HW 1         55
## 7  The Rookery         75
## 8 Waka Landing         33
hab_s
## # A tibble: 8 × 3
##              site stock_access  region
##             <chr>        <dbl>   <chr>
## 1      Confluence           10   Fresh
## 2       El Dorado            3   Fresh
## 3         Orbells            0   Fresh
## 4            Rail           NA Estuary
## 5     River mouth           NA Estuary
## 6 State highway 1           NA Estuary
## 7     The Rookery            0   Fresh
## 8    Waka Landing           NA Estuary
spot_s3$sa <- hab_s$stock_access

spot_s3
## # A tibble: 8 × 3
##           site total_fish    sa
##          <chr>      <int> <dbl>
## 1   Confluence        256    10
## 2    El Dorado         17     3
## 3      Orbells        175     0
## 4  Rail Bridge         37    NA
## 5  River Mouth          2    NA
## 6   State HW 1         55    NA
## 7  The Rookery         75     0
## 8 Waka Landing         33    NA
# trap_s3 <- trap_g3
# 
# all_td_hab <- bind_rows(spot_s3, trap_s3)
# all_td_hab


lord2 <- c("Orbells", "The Rookery", "Confluence", "El Dorado")
spot_s3$siteF <- factor(spot_s3$site, levels = lord)

p3 <- ggplot(data = spot_s3, mapping = aes(x = sa, y = total_fish))
p3 <- p3 + geom_point()
p3 <- p3 + theme_few() + scale_fill_brewer(palette = "Dark2", name = "Method")
p3 <- p3 + xlab("Stock access, 1-10") + ylab("Total No of Fish Found")
p3 <- p3 + geom_text(aes(label=site), vjust=0.25, hjust="inward")
#p3 <- p3 + ggtitle("Stock access vs fish spotlighted")
p3 <- p3 + scale_x_continuous(breaks=c(0:10))

p3
## Warning: Removed 4 rows containing missing values (geom_point).
## Warning: Removed 4 rows containing missing values (geom_text).

ggsave("./figures/fish sum vs farming impact.png", width = 21, height = 29.7/3, units = "cm")
## Warning: Removed 4 rows containing missing values (geom_point).

## Warning: Removed 4 rows containing missing values (geom_text).