Jon Kropko
February 13, 2017
First I load the needed libraries:
library(dplyr)
library(tidyr)
library(plotly)
Next I load the data that contains information about the party and ideological composition of state legislatures, and state level GDP.
First I collpase the data by year in order to create some interesting plotly graphs.
stleg_gdp <- read.csv("stleg_gdp.csv")
stleg_gdp_year <- group_by(stleg_gdp, year)
stleg_gdp_year <- summarize(stleg_gdp_year, housemean=mean(hou_chamber, na.rm=TRUE),
senmean=mean(sen_chamber,
na.rm=TRUE),
gdpmean=mean(GDPtotal,
na.rm=TRUE),
pcmean=mean(GDPpc,
na.rm=TRUE),
percentmean=mean(private_percent,
na.rm=TRUE))
Next I collpase the data by state.
stleg_gdp_state <- group_by(stleg_gdp, statename)
stleg_gdp_state <- summarize(stleg_gdp_state, housemean=mean(hou_chamber, na.rm=TRUE),
senmean=mean(sen_chamber,
na.rm=TRUE),
gdpmean=mean(GDPtotal,
na.rm=TRUE),
pcmean=mean(GDPpc,
na.rm=TRUE),
percentmean=mean(private_percent,
na.rm=TRUE))
vadata <- filter(stleg_gdp, st=="VA")
newdata <- filter(stleg_gdp, st=="VA"|st=="NC"|st=="MD"|st=="PA")
stleg_gdp2 <- stleg_gdp
stleg_gdp2$year <- as.numeric(as.character(stleg_gdp2$year))
Finally I pull out only the data for Virginia, North Carolina, Maryland, and Pennslyvania.
vadata <- filter(stleg_gdp, st=="VA")
newdata <- filter(stleg_gdp, st=="VA"|st=="NC"|st=="MD"|st=="PA")
stleg_gdp2 <- stleg_gdp
stleg_gdp2$year <- as.numeric(as.character(stleg_gdp2$year))
Now we are ready to do some plotting.
A basic scatterplot:
p <- plot_ly(stleg_gdp_state, x = ~pcmean, y = ~housemean, type = "scatter")
htmlwidgets::saveWidget(as.widget(p), file = "demo1.html")
A scatterplot with color variant:
p <- plot_ly(stleg_gdp_state, x = ~pcmean, y = ~housemean, type = "scatter", color = ~percentmean)
htmlwidgets::saveWidget(as.widget(p), file = "demo2.html")
A 3D scatterplot:
p <- plot_ly(stleg_gdp2, x = ~year, y = ~GDPpc, z = ~hou_chamber,
type = "scatter3d", color = ~private_percent)
htmlwidgets::saveWidget(as.widget(p), file = "demo3.html")
The left/right ideology of Virginia's state house over time:
p <- plot_ly(vadata, x = ~year, y = ~hou_chamber, type = "scatter", mode = "lines")
htmlwidgets::saveWidget(as.widget(p), file = "demo4.html")
Comparing Virginia to other states:
p <- plot_ly(newdata, x = ~year, y = ~hou_chamber, color = ~st, type = "scatter", mode = "lines")
htmlwidgets::saveWidget(as.widget(p), file = "demo5.html")